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ABSTRACT
I

New methods have been developed to compute inviscid surface pressures and
temperatures for both perfect and equilibrium chemically reacting flows on both
pointed and blunt bodies of revolution. These new methods include an improved
Shock-expansion Theory, an improved Modified Newtonian Theory (MNT), and an
improved method for angle-of-attack effects. Compar.son of these approximate
engineering techniques to exact inviscid computations using a full Euler code showed
that these new methods gave very good agreement of surface temperature and
pressures as well as forces and moments. Incorporation of this new technology into
the NAVSWC aeroprediction code will allow the code to be used for engineering
estimates of inviscid surface temperature at high Mach numbers. These approximate
temperatures can then be used as inputs to perform heat transfer analysis.

ii
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1. INTRODUCTION

For the past 20 years, the Naval Surface Warfare Center (NAVSWC) has been
involved in developing codes to calculate aerodynamics on tactical weapons. These
codes have attempted to meet the changing needs of the Tactical Weapons
Community and keep pace with aerodynamic requirements. A recent effortl was
undertaken to look at where we have been, where we are, and where we need to go in
the future with respect to aerodynamic codes. This effort identified three needs: (1)
an improved aerodynamic prediction code that allows Mach numbers to 20, has
improved low aspect ratio wing lifting capabilities, and allows improved base drag
prediction; (2) an improved full Euler code that has real gas effects included,
improved low supersonic Mach number ability, and an integral boundary layer code
to compute viscous effects; (3) a Navier Stokes code to provide aeroheating and high-
angle-of-attack aerodynamics on a limited number of high-value projects. This report
is concerned with partially meeting the number 1 need above; that is, including real
gas effects into the computations so that higher Mach numbers can be considered.

The latest version of the aeroprediction code 2-4 calculates aerodynamics up to
Mach 8. The main reason for limiting the code to this Mach number is that real gas
effects start becoming important around Mach 6, and at Mach 8 can still be neglected
for most applications. However, as Mach number increases substantially above Mach
6, the requirement to have reai gas effects included in the aeroprediction code
increases. Over the past 5 years, tactical weapon concepts have been investigated
that fly at Mach numbers up to 20. For this reason, it is believed that real gas effects
need to be included in the aeroprediction code.

The theoretical methodology used to predict aerodynamics above about Mach 3
is Second-order Shock-expansion Theory (SOSET) combined with Modified
Newtonian Theory (MNT). A brief search of the literature revealed no pre-ent
second-order accurate theoretical techniques for including real gas effects !---o
aerodynamic computations. The only approaches available were either incorporation
of real gas effects into the full inviscid Euler equations of motion or first-order local
slope techniques. The first approach is beyond the computational complexity desired
for an approximate engineering code, whereas the latter approach does not yield
accurate axial force calculations. Hence, extending SOSET to include real gas effects
will meet an immediate need for the aeroprediction code and will also fill a gap in the
external literature.
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2. ANALYSIS

This section is written at a level that covers the high-speed fluid flow
phenomena discussed in the Introduction from a first principles viewpoint. The
inLent is to acquaint the reader who has no prior background in Real Gas effects with
the importance and the physics and chemistry of these effects as well as how one
mathematically goes about solving for the flow field.

2.1 PERFECT AND REAL GAS BACKGROUND

2.1.1 Definition

Usually when one thinks of a definition, one thinks in terms of a clear and
concise answer. Such is not necessarily the case with real and perfect or ideal gases.
This is because there are several definitions of perfect gases and real gases
depending on which reference one uses5 -10 and whether one uses the chemist's or
aerodvnamicisi's definition. To define a real gas, we must first define a perfect gas.
Once we have defined a perfect gas, a real gas will be defined to cover all other cases.

Some references define a perfect gas as one that follows the equation of state
identically

p = pRT (1)

and has constant specific heats

C C, cn- (2)

(NOTE: Here a bar is placed over the Cp, C, to distinguish the specific
heats from pressure coeffi-ient Cp, used throughout the report.)

Others break down the definition of perfect gas into a calorically-perfect gas, which is
defined by Equations (1) and (2), and a thermally-perfect gas where Equation (1) is
still satisfied but the specific heats are functions of temperature. That is

C =rlTl

(3)

Finally, one authors allowed a perfect gas to include cases where the specific heats
were functions of pressure and temperature, i.e.

C "f T, p)p

(4)
C=fT, p

2
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and Equation (1) was not required to be satisfied. The only requirement for a perfect
gas was that the intermolecuk-x attractive or repulsi,:e forces between atoms or
molecules be neglected (this is the original definitiGn by the chemist).

For pur-x-,ses of this report, dhe most strict definition for a perfect gas is taken
(which is sometimes referred to as a calorically-perfrect gas). That is, Equations (1)
and (2) must be satisfied. A real gas is, therefore, one where either inter-
molecular forces cannot be neglected 'low temperature and high pressure) or
one where the temperatare is high enough to excite the i,.cvcrnad energy modes
of vibration, electronic excitation, or cause chemical reactions and
dissociation of moleculcs or ionizations of atoms. In some cases, Equation (3) is
valid (comnutation of additional internal energy from vibration) whereas, in other
cases, chemical reactions are occuiTing or the intermolecular forces are not small and
Equation (4) applies and Equation (1) is no longer valid.

In summary, a perfect gas is defined here as one that obeys Equations (1) and (2)
exactiy, and a real gas is defined as one that violates either Equation (1) or (2) or
both. This definition is consistent with most of the aerodynamxics literature.

2.1.2 Importance of Real Gas Effects

One may ask: Why be concerned about real gas effects for tactical weapons
(since they have been neglected up to this point in time, to the author's knowledge, for
aerodynamic computations)? A good illustration for the iSuportance is given by
Anders-on.8 He showed the results of static temperature behind a normai shock
where the -)erfect gas assumption was made and then these results- were compared to
a real gas. For a perfect gas, the static temperature ratio across a no;rmal shc--k is

-T - ___,_. _._ _ -2, (5)

where T.)2 is temperature behind the shock and subszript - represents conditions in
the fieestream ahead of the shock. Figure 1 plots these results as a functicn o=f Mach
number for an altitude of 170,000 ft. At this altitude, the speed of sound is approx-
imately 1100 ftisec and the freestream air temperature is approximately 283'K. The
normal shock would occur in the vicinity immediately ahead of the blunted portion of
a seeker or the missile nose. Note that the temperatures of interest to tactical
weapons aerodynamicists can be very high for high Mach number conditions
as ;uming a perfect gas. Also shown on the figure are the real gas results taken fro-n
R,- -rcnce 8. Note, in particular, the plot of TR/Tp, the ratio of the real gas to perfet.
gas temperature. For Mach numbers of 6 or less, this ratio is unity or near unity.
This is the reason that aerodynamic computations below MN = 6 could neglect real
"gas effects with little error. However, as one goes above M. = 6, the error in
temperature using the real gas assumption can be quite large. This is of particular
importance to materials and structures engineers who must design the system to

3
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withstaad these temperatures. Also shown in Figure 1 is the melting point of typical

structural materials used in present-day missile design. The actual-use temperature

is less than the melting-point temperature. For missiles that fly at any appreciable

time above thc maximum-use temperature of a given material, some form of active

cooling or insulation would be required. This means additional dead weight and,
hence, less performance for the missile. It is therefore obvious that a reasonably

accurate estimate of temperature is essential for the design of the seeker and the

structure of the weapon. The reasons for this drastic effect on the temperature will be

discussed in the next section on fundamental phenomena.

m .1/ i

mm __ / V.0"Tp PERFE-C GAS

TRITIP N. 

/

STATIC 8 
/

TEMPERATURE r 0-6
BEHIND 6j
NORMAL Tl/T
SHOCKT 2  MELT TEMPERATURES TR/ IT

(.KxIU- 3) 4 OF METALS 0.4

S--- -- -_TURE TR REAL GAS

-= =0 • . Io, .0
0 4 6 8 10 12 14

FREESTREAM MACH NUMBER, M.

FIGUR.E 1. TEMPERATURE BEHIND A NORMAIL SHOCK AS A FUNCTION OF
FREESTP.EEAM MACH NUMBERH = 170 kft,

Before we finish the discussion on the importance of real gases, it should be noted

that pressure is a!so affected but to a much less extent than temperature. This leeds

one to mhe conclusion that if temperature is not of concern and aerodynamic forces and

moments are the major interest, the assumption of a perfect gas can be made with

reasonable validity for Mach numbers much higher than 6. The reason for this is

that pressure is mainly governed by the kinetic energy of the flow and not the

potential energy. On the other hand, the temperature is a function of both and,

therefore, varies considerably due to the real gas effects. In fact, many of the

hypersonic flow assumptions are based on the assumption of a thin shock layer and

N.M. > > 1, and reasonable results for aerodynamic forces can be obtained.
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2.1.3 Physical f henomana T-hat Cause Real Gas Effects

A gas. like any other sub!ýtance, is composed of atomic structures either in
singular form (monatomic) or joined together (diatomic or polyatomic). Air at room
temperatuxe is composed primarily of nitrugen (N'2) and oxygen (02) with minute
traces of caibon dioxide (C0 2 1, argon (Ar), and nitrogen oxide (NO). The total
amount of these trace ejements is iess than 2 percent of the mass of a given volume of
air, whei eas the N2 is about 78 percent and 02 about 20 percent. Hence, for
engineering purposes, air at low to moderate temperatures (T < 2500*K) can be
assumed to be composed of N2 and 02-

"•hese diatomic molecules are in continuous motion and can translate in three
directions (x, y, z) and can rotate in two directions about axes A and B as shown in
Figu-P 2- (Note that rotational energy about an axis going through both N atoms can
be neglected in comparison to that about the transverse axis.)

a A

TRANSLATION VELOC! TY = vV,2 4- V-2+ Vz2

ROTATION VELOCITY = ca,3

FIGURE 2. N-, MOLECULE UNDERGOLNG TRANSLATION AND ROTATION

So as air stays below about 600°K, the only energy it contains is the rotation
and translation of the diatomic N2 and 0.2. This is what allows us to make the
assumptions of a perfect gas that must follow Equations (1) and (2). However, as the
air is heated further, an additional energy. mode enters into the physica! model of the
N2 , 02 molecules. This mode is vibration. That is, referring to Figure 2, one could
imagine a spring-mass system with a spring that allows additional internal energy to
be generated between the nitrogen or oxygen atoms. At temperatures above 2500°K,
the molecule has acquired about 90 percent of the internal energy possible from
vibration of the molecules.

As the air is heated above 2000'K, the diatomic molecules of NZ, 02 begin wo
dissociate and chemically react. Air then begins to contain significant amounts of 02,
0, N.). N, and NO as the temperature is increased. FinJly, as tie air is heated above
8000°K, significant ionization occurs (an electron leaving one atom and being picked
up by another atom), which gives rise to an additional mode of internal energy (the

5
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gain or loss of elect-ons) as well as additional chemical reactions. An example (f the
species composition ofair as a ft nuion of temperature is shown in Figure 3, which is
taken from Reference 11 Figure 3 shows how the 02, N2 go to N, O NO, N+, 0+-
and e (free electrons) as teripprature is increased.

N2+

I e'

10T•2.00..

MFROM REFRRENC I1

lo No

32" \ VT..,\ : ,,

ioiainaeaddan h i oeue brea dow an he icl ec fr

O.NO-

2 4 6 S 10 12 14 16

T, 1000 degK

h IGUes iE 3- EQUILIBRIUM COMPOSITION OFi bra AT DENSITsY O ciao0-2 pres
;,FROM REFERENCE i 1 ;

The fundamental physical phenomenon uhat occurs as air is heated (or as Mach
number of a vehicle is increased) is that the adsAltonll ener-gy modes of vibration and
ionization are added and the air molecules break down and chemically react to forrm
other species. It is axis transfer of ene.-r-y to vibration and the dissociation process

that accounts for the fact that the temperature is much lower for a real gas than for a
perfect gas at high Mach numbers. That is, the translational and rotational energy
that accounts for the high temperatures in a perfect gas is shared by other forms of
energy and the chemical reactions in a real gas. It is this sharing of energy across

6
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energy modes and the conservation of energy that require the temperature for a real
gas to be lower than that for a perfect gas. How one treats the computation of real gas
effects from a computational standpoint is discusse'd later in the Real Gas
Computational Process section.

2.2 PERFECT GAS COMPUTATIONAL PROCEDURE

Before getting into the mathematics of real gas computations, it is instructive to
briefly discuss perfect gas computations on a missile-like body using a combir.ation of
Newtonian Theory and SOSET. Here it is assumed that the missile has a blunt nose
where Modified Newtonian Theory (MNT) would be used for flow computations and
SOSET would be used past some match point (between the pressures predicted by the
two theories). If the nose is sharp or pointed, SOSET can be used directly.

2.2.1 Modified Newtonian Theory

Newtonian Impact Th eory assumes that, in the limit of high Mach number. the
shock lies on the body. This means that the disturbed flow field lies in an infinitely-
thin layer between the shock and body. Applying the laws of conservation of mas.
and momentum across the shock yields the result that densit, behind the shock
approaches infinite values and the ratio of specific heats approaches unity. The
pressure coefficient on the surface becomes' 2

C =2 zn"IN i6)

where 8,q is the angle between the velocity vector and a tangent to the body at the
point in question (see Appendix A).

Leesl 2 noted that. a much more iccurate prediction of pressure on the blunt-
nosed body could be obtained by replacing the constant "2" in Equation (6) with the
stagnation pressure coefficient Cpo. Cpo can be found from

2 
0C = -- 1I1 17)

PO YM 2 - .

where p-2/p, and p0o1P2 are given by13

P . 2 . - Y (8 )

S(9)S- 1 (9)
2 2

7
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Also

(Y _ 1)M2 +-2
M vl= ° +2(10)

22'M2_- (y - 1)

so that Equation (9) can be related to M, and y only by substitution of Equation (10)
into (9) to obtain

PO 4YM 2 2(V- 1)---POp. -- I - +'I-_M- (11)

P., (Y +1Om! I

Equations (8) and (10) hold only for a perfect gas. They are the relationships taken
from Reference 13 for flow across a normal shock wave. Combining Equations (11)
and (8) into Equation (6), we obtain

~ {(y"+ 1)M2= Y-- ~ ___ ___ 1 (12)

2 !I+ yM2(Y.: .. )CPo }• 22y.M2 - (y - 1D?

and
C�Cp if 2Zi• (13)

CP= C PO m28eq (3

Equation (13) allows the calculation of the pressure coefficient all along the blunt
surface of a missile nose or wing leading edge for a perfect gas where Cpo is given by
Equation (12) and sin eq from Appendix A.

We also must derive an expression for static temperature along the sur.ace. To
do this recall that, for an adiabatic flow, total temperature is constantL This means
that

T= Tio, = T Il+ -MN) (14)

Also recall that the total pressure and density relationships are constant only for
isentropic flow. This means that these relationships do not apply across a shock but
they are constant along a streamline for a perfect gas, fozen flow, or equilibrium
flow. Since the stagnation streamline wets the body, we can apply these reiation-
ships along the body tr compute local Mach number and then apply Equation (14) to
compute local temperature. The total pressure is given by Equation (9) and the total
density is

"P°, 2' :- -- (15)

P2 • A128
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Now from Equation (13)

CPPL -- P=

c2CP- 1
P1 2

or

PL=( 2~~) Pc (16)

Also

P02 :"PL

at the stagnation point. Thus

p P.V -C +P= (17)
02 2 .PO0  c

Equation (17) gives p-, as a function of freestream conditions only so it is a known
number. Since Equation (16) is also known all along the surface, then from Equation
(9) local Mach number can be computed by

p v- 1

Y; 2 _ 11 (18)

Then from Equation (14)

TL=To, + + M. (19)
2

Also from the equation of state for a perfect gas

P L (20)
RTL

Other properties such as internal energy, enthalpy, and entropy could also be
computed, if desired, at each point. That is

eL CTL = _-'-)TTL (21)

9
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hL= CPTL--(Y J TL (22)

H = CpTl 0i=( ')Toi (23)

The change in entropy across the shock is

- 1) In 0 (24)
C\ -Po1

Since the flow is isentropic along a streamline (which can include the body surface),

AS along the body is zero.

2.2.2 First-order Shock-expansion Theory

First-order Expansion Theory was first proposed by Eggers et al. 14-17 for bodies
of revolution flying at high supersonic speeds. Basically, the Shock-expansion
Theory computes the flow parameters at the leading edge of a two-dimensional (2-D)
surface with the oblique shock wave relations and with the solution for a cone at the
tip of a three-dimensional (3-D) body. Standard Prandtl-Meyer Expansion (PME) is
then applied along the surface behind the leading edge or tip solution to get the
complete pressure distribution over the body surface. Referring to Figure 4, this
theory inherently assumes that the expansion waves created by the change in
curvature around the body are entirely absorbed by the shock and do not reflect back
to the body surface. Since the theory assumes constant pressure along one of the
conical tangent elements of the surface, fairly slender surfaces must be assumed or
many points along the surface assumed to obtain a fairly accurate pressure
distribution. Another way of stating this is to minimize the strength of the
disturbance created by Mach waves emanating from the expansion corner and
intersecting the s-hock, the degree of turn should be small.

For the 2-D starting solution, the equations for a perfect gas across an oblique
shock are1 3

p2  2 yMno -,in - (P= 3 + I(25)

P2 + 1I2 ýM 2ri n

p= (26)
P. t(- 1) M 2 -in (2+6

10
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T, [t2yM 2 sin0a -i(y- 1)I] (y- 1)-M 2 sin 2o + 2 (
2(27)

T. (y + 1)M sin2o

(y+ 1)2M2 sin2 -4 (_Sn_1)(yMs in +1)N12= (28)
i [2yM 2 -.sn 2 o -- (y- 1lII(y- !)M2 . n2 o-0 + 2]

a in Equations (25) through (28) is the shock angle for a 2-D body with initial angle 0.
This angle may be determined by the numerical solution of Equation (29)

sin 6 o +) sino "- n'o+d0 (29)

where

_M2 + 2

M2

"M= 2 Y y-

b o y -si-0
C ,M,-M2 bin 0

c cl:ý

LEADING EDGE SHOCK ANGLE(o) SHOCK WAVE

y r

TANGENT ODY / -i
tCOMPOSEDOOf

FIGURE 4. APPROXLMATION OF TRUE BODY BY ONE COMPOSED OF
STRA.G HT LINTE SEGMENTS TANGENT TO SURFACE
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Here the weak shock solution is taken as physically more correct (intermediate value
of iin2 W). For a wedge flow, conditions behind the shock are constant so Equations
(25) through (28) determine the conditions at the surf .ce as well. Total conditions
can be determined by Equations (9), (14). and (15) and energy, enthalpy, and entropy
change by Equations (21) through 124). The 2-D starting solution would be used for
the leading edge portion of the lifting surface on missile configurations.

For the 3-D starting solution, the tip is approximated by a cone where the initial
cone angle is defined by a tangent to the surface at the tip as shown in Figure 4.
Properties immediately behind the shock are also calculated by the oblique shock
relations given by Equations (25) through (28). However, the flow between the shock
and body is not constant throughout the flow field, as in the case with the wedge
solution, but is constant along rays emanating from the cone tip. This requires
solution of a differential equation to define the shock wave angle and properties at
the body surface. This was done by Taylor and McCall.18 . Without going through the
derivation of the differential equation, it is repeated here for reference.

-dV d~ NY d'1V
j\2 -2(~~! r r 2+Max-- - - - I 2Vr,- cu2 + -l

2 'dO ; dO dO2

dV dV dV d2 V
V - +- - = 0  (30)

0iO : dO dO d d0

where

\" = 2) H =Con.-,

Refer t,. Figure 5 for the nomenclature.

T SHOCK.Vo AND V,
SHOCK DEFINED BY OBLIQUE V•

SHOCK RELATIONS., -
..9"

I 0 -V5 v 0 OAT SURFACE

.9c

x

FIGURE 5. NOMENCLATURE FOR CONICAL SOLUTION
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To solve this equation, we assume a shock angle o. With this, the conditions behind
the shock can be computed for a given freestream Mach number by Equations (25)
through (28), and the initial velocity components Vr and Ve behind the shock can be
computed. Equation (30) is integrated until Va = 0. If the angle G0 is not correct, a
new value of shock angle is guessed and an iteration occurs until the correct value of
G, is found for V0 = 0.

The Mach number at the surface is then related to the total enthalpy as follows:

M2
V2 =aJ0.-1)+V~2

or

V
2

met (31)
V2  (.y - 1)M

2

(

Solving for M2, there is obtained

(V,;V )2 1

max
i'2 = .... (32)

I -(v / V r2tyi

The temperature at the surface can then be determined from Equation (14) since To
is constant throughout the flow. Knowing the total pressure and density behind the
shock (where the flow field is isentropic) also allows one to then compute the local p
and p throughout the flow and, in particular, at the surface from Equations (11) and
(15).

Once the starting solution and the various flow properties are known at the
surface of a 2-11 or 3-D body, the PME Theory is applied for points downstream.

For a perfect gas, one can write7

y(- 1  -,+1

If AO is the change in the local surface slope in going from one tangent segment of the
body or airfoil to another tangent surface (see Figure 4), then

-2'-!2 = A0 + vYMI) (34)

13
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This means that one calculates the Prandt-Meyer angle for the first surface with
Equation (33), using M, from Equation (32), then must solve Equation (33)
numerically for M2 based on some value of v2 from Equation (34). Knowing M2, we
can compute T2, P2, P2 from Equations (11), (14), and (15). Thus for o = 0, sharp-
nosed bodies, or airfoils in a perfect gas, we now have expressions for pressure and
temperature all along the surface of the body or airfoil.

2.2.3 Second-order Shock-expansion Theory (SOSET)

Syvertson (et al.) extended the generalized Shock-expansion Theory on pointed
bodies and sharp airfoils to what he called a second-order theory. 19 He defined the
pressure along a conical frustum by

P =P_ - (P- P2)e-q (35)

instead of a constant on each segment as was the case in the generalized theory. Here
Pc is the pressure on a cone with the given cone half angle equal to the slope of the
conical segm 3nt with respect to the axis of symmetry. P2 is the pressure just aft of a
conical segment (see Figure 6), which is calculated from the PME, Equations (33) and
(34).

MACH UNES

310 MCC

S.DIRECTION

FIGURE 6. FLOW ABOUT A FRUSTUM ELEMENT

Also

s- 2)
(36)

PC - P2

Thus examining p from the equation, it can be seen, for example, on the frustrum
element 2-3 that the pressure varies from the pressure of the generalized theory at

"14
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point 2 to that of a cone of angle 02 and Mach number M2 as s gets large. Reference 19
approximated the pressure gradient as

LPI B ~ 22 + B 2 fl 1L

n02 BQ s

where

12

B 1,2 1,2 M

1-1

I1+ Y ~

Finally, for negative angles such as would occur on a boattailed configuration, pc was
replaced by p.. No discussion was given for blunt bodies. It should be noted that if rl
of Equation (36) becomes negative, the SOSET reverts to the generalized or First-
order Shock-expansion Theory of section 2.2.2. This is because (35) will not give the
correct asymptotic cone solution for negative values of l.

Jackson et al.20 combined SOSET with MNT to treat blunt-nosed configurations
with or without flares. They, like the authors of Reference 18, assumed that the
lifting properties could be predicted by assuming that the original body is made up of
several equivalent bodies of revolution represented by the various meridians (see
Figure 7). They assumed the match point between the MNT and second-order shock
pressure prediction to be the angle that corresponds to shock detachment on a wedge
with the given freestream Mach number.

DeJarnette et al. 21-23 made significant improvements to the work of Jackson et

al.2 0 and Syvertson.19 These new improvements included the following:

1. A new empirical equation for calculating pressures on blunt noses.

2. A new matching point to match the blunt-nose pressures with those of
SOSET.

3. An exact (as opposed to an approximate) expression for the pressure
gradient downstream of a corner.

4. A new expression for pointed-cone pressures at angle of attack which
improves the initial pressure prediction over that of tangent cone theory.

5. A new technique for calculating pressures on bodies at incidence.

15
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*18(r

EQUIVALENT BODIES

FItGU-RE 7. TYPICAL EQUIVALENT BODY SHAPES USED FOR COMPUTING
LIFTING PROPERTIES WITH SECOND-ORDER. SHOCK EXPANSION
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The pressure gradient after a corner was calculated exactly through a numer-
ical integration of the equation

'asG)v 2 M d it 1 )2(-)~l (38)
(M2 1) dOs r I

Integration of this equation gives a)G/as, and ap/8s is then computed from

ap =(aG +a0)x(9
as -- as asI

where
2yp

sin 2p

and 80/8s is the curvature of the body at a given point.

The exact pressure prediction gives much more accurate results than does the
approximate method given by Equation (37), particularly for large jumps AO. As
noted by DeJarnette, it is important to get an accurate initial pressure to accurately
predict the pressures over the rest of the body profile. Similar expressions were
derived for

Lp whena > 0
as

but are not repeated here.

Finally, the expression for the pointed-cone pressure at a > 0 was estimated by
combining Slender Body Theory, Newtonian Theory, and an approximate expression
for Cp, = oto give

Cpto,0,4ý,M) = Cp + ACe (40)
=0

where

AC = -Sin2asin20cs4--s+in-c+. a 2 0 2- Q1 tan20)_ 2+ + -in2• (40a)
2 Jo (y+ 1+ +2 f'+1 x

C201+ (y0 + K 2 In + -) (40b)

(= -" 1 7 2 2

I! 17
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K2=(2- 1) 2C (40c)

Note that ib=O is the leeward plane in this report versus the windward plane in
Reference 23.

As shown in Reference 23, the addition of these improvements gave a
significant improvement in pressure and force and moment prediction over a limited
range of configurations for which computations were performed. Reference 2, which
used the techniques of Reference 23 to conduct more extensive comparisons with
experiment, found that improvements in MNT were minimal and, therefore, the
standard MINT was used with a match point occurring where the local Mach number
was 1.1. Hence, the latest version of the NAVSWC Aeroprediction Code (References
3 and 4) contains the last three improvements by DeJarnette et al. but does not
contain the first two.

In more recent, unpublished research, DeJarnette was able to derive
expressions for improving the Modified Newtonian Theory on blunt-nosed bodies
compared to present usage. The derivation of this new methodology is given in
Appendix B. This new methodology is given by

Cp-=CpMN - kcDsm8eq I wos beq - cOs(S 1 (41)

where m = 2.78, (&eq). = 25.95c, and

eq eqk=
sinb ) cosm (8

eqm eqm

Here

dCp = C sin28 
(42)-d--S MN Po eq(2

Thus, the theory that will be extended to M. = 20 and to calculate the effects of
equilibrium chemically reacting flow behind the shock is given by Equations (38)
through (42).

18
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Note that making the above extensions and modifications will require several
changes to the existing Shock-expansicn Theory combined with MNT for blunt
bodies. These include the following:

1. Calculation of real gas effects behind a normal shock.

2. Calculation of real gas effects across an oblique shock attached to a cone
and wedge.

3. Calculation of PME for chemical equilibrium flows.

4. Extension of the exact pressure gradient formula for a = 0 and a = 0 to
include frozen and chemical equilibrium flows.

5. Modified Newtonian Theory extended to real gases.

6. Definition of match point up to M. = 20.

7. Computation of temperature along body surface (in addition to pressure).

8. Modification of any empirical formulas as necessary for frozen and equi-
librium flows.

These changes will be discussed later in this report. It should be noted that, while the
first three changes are state of the art,2 4 -2 7 the last five have never been presented
before to the author's knowledge.

2.3 REAL GAS COMPUTATIONAL PROCESS

2.3.1 Summary of Procedure for General Chemical Species Composition

To put real gas computations in proper perspective, consider the mathematical
model of an inviscid flow field. These equations are standard in the literatureS5-10 and
are sometimes referred to as Euler's equations. They will be stated here in vector
form without derivation.

Continuity Equation

ap
a +V-pv =0 (43)at-

(one equation, four unknowns)

Momentum Equation

D - -1- v = m vp (44)
Dt p

(three equations, one additional unknown)
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Enery Equation

D(h+V 212) ap -•
p Dt - +pq+p(f-V) (45)

(one equation, three additional unknowns)

Equation of State

h = h(p, p) (46)

(one equation, zero additional unknowns)

These equations have few assumptions. They assume inviscid flow with no
sources or sinks present and the potential energy of the air mass due to gravity is
negligible. There is a total of six equations and eight unknowns- If we make the
assumption of no body forces (i.e., f = 0) and no heat added to the system from the
outside (radiation, etc. so that q = 0), then the system reduces to six equations and
six unknowns. For a perfect gas, Equation (46) is

h=C T (47)p

and from the equation of state for a perfect gas:

T_ -(48)
pR

Here Cp is a constant Equation (48) alcng with Equations (43) through (47) form a
deterministic mathematical model for general 3-D computation of inviscid flows over
configurations in a Mach number range where these equations are valid. They are
solved in finite difference form such as References 28 and 29 or in various approx-
imate forms such as References 3, 4, or 30-32 (among others). If viscous flows are of
interest, the viscous stress terms can be added to Equation (44), and the set of
equations then becomes the Navier Stokes equations. Also, they can be solved
numerically or by approximations of a thin layer near the body (boundary layer).

The question we must answer is how we calculate the enthalpy (or internal
energy since h = e + p/p) when the gas is at a temperature such that the perfect gas
law is no longer valid. Numerous efforts are reported in the literature going back to
the 1940s and 1950s when high-speed flight was really becoming a practical problem.
Again, a rederivation of results will not be repeated here--only a summary com-
putation process. The process draws heavily on the kinetic theory of gases and
Quantum Mechanics.
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The internal energy of an atom (0, N, 0+, N+) or molecule (NO, 02, N2) is
comprised of

e =et + er + e + e + ed (49)

where subscripts t, r, v, e. d stand for translation, rotation, vibration, electronic
excitation, and dissociation. For a single atom, only et and ee are important since the
rotational energy is small compared t3 translational energy. From the kinetic theory
of gases 5

3
e. = 2 RT (50)

for both atoms and molecules. Also

e = 0 foratoms
r

e = RT for molecules (51)

The vibration energy is somewhat more difficult to compute. The vibration energy is

e =Ofor3toms

Re
e = (52)

where 0, is 2270'K for 02, 3390CK for N2 , or approximately 3160'K for air up to the
point of dissociation. Also, exp has been used to denote exponential to distinguish the
normal terminology of e for exp from the total internal energy e.

Combining Equations (49) through (52), for air up to approximately 2000°K

e=e +e +et r V

5 Re
e= - RT + (53)

Equation (53) is for molecules only as we assume air is about 80 percent N2 and 20
percent 02 and, therefore, no atomic species are present. Note that Equation (53) is a
function of several fixed constants and temperature only. Hence, Equation (1) or (46)
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holds identically, and one can replace Equation (48) with Equation (53) for
temperatures in the range of 600°K to 2000°K. Figure 8 is a plot of the specific heats
and the ratio of specific heats where only the rotation, translation, and vibration
modes of energy are accounted for (see References 6 and 8).

5- 'PERFECT GAS
0--I REAL GAS CpI

CpIR

SPECIFIC3

HEAT

2-

0.01 .6 1 2 3 4 5 6 7 8

LOCAL TEMPERATURE X 10-3 (K)

FIGURE 8. SPECIFIC HEATS FOR AIR (NO DISSOCIATION OR IONIZATION)

As air is heated above 2000*K, it begins to dissociate into N, 0, and NO atoms
and molecules in addition to the N2 , 02 already prevalent. Initially, the 02 begins to
dissociate, but at temperatures of about 4000°K, the N 2 dissociation also becomes
appreciable. Finally, above temperatures of 9000'K, the oxygen and nitrogen atoms
and molecules begin to give up electrons (ionize). This dissociation and ionization of
the air molecules creates additional internal energy that must be accounted for to
accurately predict the thermodynamic and transport properties in the flow. To
compute these thermodynamic properties, we first must determine the species
concentrations at the given T and p of the mixture. Then enthalpy, internal energy,
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and values of specific heats, ratio of specific heats, and gas constant can be computed.
Some typical chemical reactions for air are

02 -. 20 (54)

N 2±:;2N (55)

SN + O NO (56)

N+ O NO+ + e- (57)

Reference 11 shows there is a total of 22 chemical reactions that oc=ur for temper-
atures up to 100WK, resulting in a set of 28 nonlinear equations. Each of these
reactions will have an equilibrium constant. These equilibrium constants are known
Ffunctions of temperature from either measurements or statistical mechanics
computations. These equilibrium constants are related to the partial pressures of the
individual constituents by the Law of Mass Action. 5 Here the partial pressures can
be thought of (for example, p.) as the pressure that would result if a container of
given volume were filled with only oxygen atoms. As an example, for Equations (54)
through (57), the equilibrium constants are related to the partial pressures of
individual constituents as follows:

(Po)2 =

(pN)2 =KN

PNO = Kp. NO0G) (60)

PNO Pe

- K (T)PN PO P. NO' (61)

There, of course, would be a single equation corresponding to each significant
chemical reaction. For temperatures below about 9000°K, Equations (58) through
(61) are the most important reactions. In addition to Equations (58) through (61), we
have Dalton's Law of Partial Pressures, which states that the total pressure of the
mixture is the sum of the partial pressures. Mathematically, for the constituents of
Equations (58) through (61), this can be written as follows:

Po0 +PO N + PN + pNO+p + p (62)
2 O NO
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Of course, if the temperature is higher than 9000°K and other chemical reactions
occur, the other species must be added to Equation (62), just as the chemical reaction
equations are included in the set (58) through (61). Note that there are seven
unknowns in Equation (62) and five equations so far. The remaining two equations
come from a chemical balance of the number of 0 and N atoms and the fact that
electric charge must be conserved. These facts, in equation form, may be written as

o .2 2p- + PO PNO + PNO
- - 0.25= 2 

(63)NN 0.[5 2PN2 PN ÷ PNO + PNO

and

p =p (64)
NO e

Again, if more reaction equations are included, then Equations (63) and (64) will
change to include other species. The fundamental principle of correct balance of 02,
N 2 and electric charge will not change, however. For a given temperature and
pressure, Equations (58) through (64) give a unique set of seven partial pressures for
the seven species (Reference 5, of course, has 22 species). This is a nonlinear set of
algebraic equations that must be solved for each given T, p to determine the species
content once temperatures are high enough for dissociation to occur. Knowing the
partial pressures of the species present allows one to uniquely determine the other
properties of the system. The details will not be repeated here but can be found in
References 5, 9, or 33. Figure 3 is an example of an equilibrium composition of air as
a function of temperature at a given density.

2.3.2 Simplified Procedures for Air

This discussion, thus far, has focused on how to compute the thermodynamic
and flow field properties of a chemically reacting gas. For general chemical
reactions, this is the process that must be used. However, for air other alternatives
are available. For example, Reference 11 has produced tables of the properties of air
as a function of p and p. These could be used in a table look-up mode in the
computation process. A more simplified approach was produced by Tannehill and
Mugge34 and later extended to other thermodynamic variables by Srinivasan et al.3 5

They produced curve fits from algebraic equations for p = p(e, p), a = a(e, p), T = T(e,
p), h = h(p. p), and T = T(p, p). These fits are valid up to temperatures of 25000°K.
Since this i.s by far the most computationally efficient method and since we will only
be dealing with air, this is the technique used in this report. Since it is the technique
used, a brief discussion of the equations relevant to the work herein will be given.

Appendix B shows the iteration process to determine properties behind a
normal or oblique shock wave, which involves assuming a value of P11P2 behind the
shock, computing p-2 and h2 from this assumed value, and then recomputing a new
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value of P2 based on these values of P2 and h2 from the thermodynamic properties of
equilibrium air. An example of the algebraic equation contained in Reference 34 is
shown here. From Reference 34, an effective -j as a function of p and p is defined by

C +C Y+C7Z+C YZ
-=C +C Y+ zCcYZ++ 6 7 (65)1I + expi(C9 (X + C1 0 Y + C'1 ).

where

= 1°gl°, 1.292)

X = lo0!o( P )1.013 X 105

Z=X-Y

The coefficients C1. C2 , C3 , C4 , C5, C6, C7, C8, C9 , C, 0 , C11 are tabulated in Table 1 of
Reference 34. This allows one to compute enthalpy from the relation

h = P Y (66)

and energy from

e=h- P (67)
P

Also, from values of p and p, the temperature can be determined from

logl 0 iT.")=d! +d 2 Y+d 3 Z+d 4 YZ+d dZ 2

d6 + d Y + dSZ + d9 YZ + doZ2  (68)

1 + exp[dl (Z + dip8

Here

X= lo j P~

""(1. 0 1 3 4x 105)
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Z=X-Y

and dl, d2, d3, d4 , d5, d6, d7 , d8, d9 , dio, dll, d12 are given in Table 2 of Reference 34.
Knowing p, p, T, h, y, e, the only quantities remaining are velocity and
compressibility factor. These can be determined from the constantcy of total
enthalpy relation and the equation of state

2 2U U2
H -- Const =- h1 + 2 b-- h2 +r 2 (69)2 2

- _ P
Sp RT (70)

Knowing H from freestream conditions and a new h2 allows one to compute the local
U 2. It should be noted here that the relationship

YP

does not yield the true speed of sound as in the case of a perfect gas. This is because y
is h/e as defined by Reference 34 and Y = y only if no dissociation of air molecules
occurs. Tannehill3 4 gave an expression for the approximate speed of sound if e and p
were known. That is

__1

a=efki+( -1)ly+k 2( )1+k k3( 1  )12()1 ~ ~ ~ 1 85 o g e pI lg

This is also provided in curve fit form by Tannehill

a = a (e, p)

The correct local Mach number is then

V
M = - (72)

a

Srinivasan3 5 produced additional curve fits of various thermodynamic
variables. These included

p - p(h, p)

p - p(p,T)

S = S(e, p) (73)

p = p(p,S)

a a (p,S)

e = e(p,S)
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Having curve fits available for thermodynamic variables means that the
computational time for real gas flow fields has been reduced considerably over what
it would be if the chemistry of the gas l-:9 to be computed at each point in the flow
field.

Some results of the Reference 34 curve fit procedure are given in Figures 9
through 12 in terms of various thermodynamic properties. In each of the figures, the
thermodynamic properties are referenced to some set of standard conditions that
could be the sea level standard atmosphere for example.

103j p/po 1E-7 1E-6 1E-5 1E-4 .001 .01 .1 1 10 100 1000

" / / Ii / /
I / ~ ;I /

I / I / / / 1
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e~eo i j I

-EiRI . T , I
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10' ,_____/____________________,____________;_

10- 1.710-6 10-5 10-' 10-3 lOZ10-1 10)0 10' 102 103 10' O 105
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we may assume that the flow is "frozen" at the chemistry that exists just behind tn,•
shock. That is, we can compute the flow as if it were a perfect gas except we have a
different value of y = y. behind the shock. Finally, if

t1 • t2  (77)

we have nonequifibrium flow, wh-ch means that the chemical processes are occurring
and changing significantly along the body. TI his results in an order of magnitude
more difficulty in making real gas computations. What can be done, however, from a
more practical standpoint is to compute the lccal conditions assuming "frozen" and
" "equilibum" flows and assume that the nonequilibrium case falls in between these
two. That is, generally the equilibrium and frozen flow cases present boundaries for
flow properties and the nonequilibrium case falls in between.

Since 'he focus of the present work is to incorporate real gas effects into SOSET,
only equilibrium and frozen flows will be considered. The computations involved
vith a nonequilibrium flow are inconsistent with an approximate mathematical
model of the flow field and are more consistent with solution of the full Euler or

Navier Stokes equations.

2.3.4 Modified Newtonian Theor,

Recall from Section 2.2.1, that the MNT pressure coefficient is given by

C = C sin2 (78)
P PO eq

where Bq is evaluated according to Appendix A. (Note that even though Equations
(41) and (42) are the relations used to calculate pressures around the blunt portion,
they are both functions of modified Newtonian pressures-) For the perfect gas
computations, Cp, was evaluated according to Equation (12 '. However, Equation
(12) no longer hc~ds for real gas computations across normal or oblique shck waves
(see Appendix C). The conditizns behind the shock wave can no longer be solved for
in cl-:sed form. as iM Section 2.2.1, because the specific heats and compressibility
factor are no longer constant. This means that an iteration takes place tb determine
the properties immediately behind the shock. Appendix C thus is the process for
defining conditions behind the shock, i.e.

- 2 " P P,2' h2. s 2, V 2" M 2" T2, Z2" S2

The question that must be addressed is twofold:

1. How do these partmeters vary along the stagnation streamline between
the body and shock?

2. How do these properties vary from the stagnation poir. aroind the body to
the point where shock expansion th-ery is applied?
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This section of the report will address these questions for both frozen flow and
equilibrium chemically reacting flows where MNT is used on tht blunt portion of a
configuration for pressure, temperature, force, and moment computations.

2.3.4.1 Frozen Flow. For frozen flow, it is assumed that the r and
comr47es.ibiliw;, factor are fixed at the values they have just behind the shock (i.e., y
- y,, Z = Zr). It is also known that, along the stagnation streamline, the flow is
isentLopic r equilibrium flow conditions. Furthermore, it is known from many
Drevious works (seir, for example, References 10, 13, and 24) that the Mach number
I !-hi,'i a c-rmal shock is much less than 1 for high freestream Mach numbers. Also,
this Mach number must go to 0 at the stagnation point which is only a slight distance
away f-om the shock. This has led to approximate theories in the stagnation region
based on constant density, temperature, and pressure which, in effect, is the
Newtonian assumption in the shock layer. That is, the shock is assumed to lie on the
body and the conditions behind the shock are the same as those on the body surface.
The physics of the flow between the shock and body is what allows one to assume y,
and Zf are in fact approximately constant for both equilibrium and frozen flow
between the shock and body and along the stagnation streamline. Reference 24
indicates a maximum 2.3 percent error in making this assumption, and in most cases
the error was much less.

A second assumption will also be made. This assumptiou will allow the use of
Equations (9), (14), and (15) in a local sense along the body where = y., and M is the
local value. Strictly speaking, these equations relating total to static conditions are
derived based on perfect gas assumptions and with constant y = 1.4. The accuracy of
this assumption (combined with others) can be assessed in comparison with exact
calculations over a blunt-nosed body by solution of the full Euler equationc. This will
be done in the Results section off-his report.

Returning now to Equation (78) and recognizing the fact that all the properties
behind the shock are known from the real gas computations of the flow across a
normal shock (Appendix C), one can write

P0. - P= 2 P

C Co.= (79)
p0  i YI P

2 P

where

Yf

Po= = + ml! = C.n. (80)

along th- stagnation streamline. Here p2D P2. h2, V2 , a-z, M2 , Y.-, zf etc. are the values
calculated i.nmediately behind the shock from Appendix B. Also
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2V22

H=h 2 + -V (81)
22

T 02--T2 (1+ "2I2)V (82)

1

+ -1< 2 )vYfl (83)P 02 P2 •1 + 
(83)

Now, since at the stagnation point local velocity and Mach number are zero, the static
pressure, temperature, density, and enthaloy at the stagnation point are simply the
total values behind the shock given by Equations (80) through (83). Thus, at the
stagnation point, for frozen flow

Ps = PoD

Ts = T02

hs=H

Ps = P0

Ms=Vs=0
2 = 5f = C :nst (844)

Cp= - -Pf = Corst

::C =C = Const

Zs =Zf Const

S = S% = Const aong body

To continue the computations around the blunt surface, an isentropic expansion is
assumed and Equation (78) is applied at each point an the surface where 8 is given by
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Appendix A and CPO is constant at the value given by Equation (79). Knowing Seq,
Cpo, and Cp allows one to calculate the local pressure at a given point. That is

P, = P. I ý , 'r"I (85)
2

Since the flow is frozen, we can treat itjust like a perfect gas except that the values of
y = yf and Rf = RZf. Hence, knowing local pressure from Equation (85), total
pressure, temperature, density, and other flow properties behind the normal shock
[Equations (80) - (84)], the fact that total conditions are constant along a streamline,
the local conditions at any point on the blunt body can be calculated by

Yf-1 1 (86)

M L= (PO2) Yf Yf 2 1 )12

PL 
-

T =T i + Yf - 1 M 2) (87)
L 02 2 L

Y. - (88)
1 + M2

P L = P 02 2 LP

= (Yf PL'1 
(89)

L PL Y

VL= MLOL (90)

-2

hL=H - 2 L and eL = hL - PLI PL (91)

2.3.4.2 Equilibrium Flow- Equilibrium chemically reacting flow properties at
the stagnation point are computed just like the frozen flow case- This is based on the
rationale discussed previously of only slight changes in the specific heats and
compressibility factor between the body and shock. However, for the isentropic
expansion around the body, y and Z are allowed to vary from the values at the
stagnation point in contrast to the frozen flow case where these parameters are frozen
at values behind the shock- Hence, for equilibrium chemically reacting flows,
Equation (84) defines the stagnation point conditions- Also, Equation (85) defines
the pressure at the next point around the body. To get the remaining proper-ties,
recourse is once again made to the real gas curve fits of Section 2.3.2. To obtain p, we
know local pressure and entropy so that
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PL = p (p'S) (92)

Then, knowing pressure and density

hL = h (p, p), TL = T (p, p), aL = a (p, p) (93)

The remaining quantities can be computed from thermodynamic relations as follows:

VL = xF2 (H0-- h,} (94)

ML = VL/aL (95)

= ap2 (96)YL = LPL/PL

eL = h, -- PL/ PL (97)

ZL = pLI(PLRTL) (98)

This process is continued around the body surface to the point where shock expansion
begins. Again, Equations (85), (86), and (92) through (98) provide initial conditions
for the shock expansion process.

2.3.5 Second-order Shock-expansion Theory (SOSET)

2.3.5.1 Zero Angle-of-Attack Solution

Recall that SOSET was given by Equations (35) and (36), repeated here for
convenience.

P = PC - (PC - P2 ) e- (35)

(ap) s-

S= (36)PC - P.,

We desire to develop the theory to allow computations to proceed around the body
using modified versions of Equations (35) and (36) for real gas effects. To do this
requires pressures on wedges and cones calculated based on real gases (see Appendix
C) and pressures behind an expansion comer computed by the PME for real gases (see

34



NAVSWC TR 90-683

Appendix D). Note some of the results of wedge, cone, and expansion flows of real
versus perfect gases shown in Appendixes C and D. The pressures in compression
processes are almost identical for perfect and real gases, whereas the temperatures
show significant differences as the Mach number and compression angle increase. On
the other hand, expansion processes show differences for both pressure and temp-
erature of real versus perfect gas computations.

If one were only interested in applying generalized Shock-expansion Theory for
equilibrium or frozen flows over wing body configurations in a local sense at near-
zero angle of attack, one would stop at this point. Appendixes C and D give the
results for pressures and temperatures that are used for points around the 2-D or
axisymmetric body. One would simply compute the pressure and temperature on the
blunt portion of the body using section 2.3.4, determine a match point, use the PME of
Appendix D to march around the surface where the pressure and other properties are
constant on each straight-line segment of Figure 6. For a sharp conical tip or wedge,
results of Appendix C could be used for the initial solution, and the solution could
proceed along the body or wing surface again using the PME results of Appendix D.
However, experience has shown that a first-order solution is unacceptable for pres-
sure on most bodies of revolution at lower supersonic Mach numbers, so a second-
order accurate pressure scheme is necessary for good force and moment predictions.
Since this is the case, a comparable second-order technique for real gas pressures and
temperatures at the surface to be available for inputs to heat transfer and force and
moment computations is also desirable.

The crux of the problem in addressing second-order solutions for inclusion of
real gas effects is to successfully address the pressure gradient of Equation 36

lap)

behind the corner and to find simple but accurate ways of addressing angle-of-attack
computations for values of Pc in Equation (35) and temperature along the surface.
The pressure gradient change behind a corner will be investigated first. To do this
will require several steps:

1. Conversion of the equations of motion [Equations (43 and (44)A from
rectangular to streamline coordinates and derivation of the characteristic
equations.

2. D:rivi onoi of the pressure change along a left running characteristic (or
Mach line) since this is the mechanism for differential pressure change
along the surface.

3. For angle-of-attack computations, a method for accurately computing Ap
and AT due to a.
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4. An algebraic approximation as a solution to an ordinary differential
equation (ODE).

While the labor and math are fairly involved to get to step 4, the solution of the
equation in step 4 is the only thing the computer sees and it is very fast. Most of the
details of the derivation of steps 1-2 will be indicated in the following discussion and
will be included either in the text or an appendix. Angle-of-attack effects are
discussed in section 2.3.6. The theoretical methodology follows the approach of
Reference 23 for perfect gases and modifies the mathematical model as necessary or
states assumptions made to allow real gas computations.

Appendix E converts the continuity and momentum equations from rectangular
to streamline coordinates and then derives the characteristic compatibility relations.
These equations for axisymmetric bodies at zero angle of attack, repeated here, are

ji dp dO - sin 0 -n p+ - (99)
pV2 dCW dC1  r

P dp _ dO - sin 0 sin p (10)

pV2 dC 2  dC 2  r

Since we are looking for ap/as downstream of an isentropic turn, information away
from the body surface must be obtained. To do this, we must relate the change in flow
variables along the left running characteristic to the change of these variables along
a streamline. In general, one can write

s = s(C. C_)

where s, ChI and C2 are all curvilinear coordinates. By the chain rule

a Ci a aC, a
as as aC as ac, (101)

Also, the differential ds is

as. as
ds - C.dC1 "t - dC,

ac. (102)

And, since ds = dCI cos p + dC 2 cos p and along a streamline dC1 = dC2 , then

aC1  aC2  1

as as 2cosp
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Thus Equation (101) becomes

a 1 [ a +

as 2cosp I1aC aC 2  (103)

or
aa a- = 2cosp -

aC 1  as aC 2  (104)

Now adding Equations (99) and (100), using the relation (104), there is obtained
(where X = pV2/If)

ao sinpsin0 cosp lap aol
aC1  r A as as (105)

Likewise, subtracting Equation (99) from (100), the relationship for pressure along
the left running characteristic is obtained as

ap = Slp 80a

C1  I as as (106)

Equations (105) and (106) are the two relations we will use to provide
information to allow computation of

(ap"
\ as 2

To do this, consider a streamline very near the body surface that will form a
streamtube between the body and the streamline (see Figure 13). Referring to Figure
13, the distance along a Mach line to the streamline is b, which again is assumed to
be very small compared to the body radius. The thickness of the streamtube is
b1 sin p', ahead of the turn and b2 sin p2 after the turn.

MACH UNES

C11 C12

0 OS1b 2

FIGURE 13. STREANMUBE GEOMETRY
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Applying Equation (106) along the streamline near the body between points 0
and 0, which correspond to the beginning and end of the expansion turn, there is
obtained

P d 1 ap adsL A 4A C 1 cIp4 as (107)

The left side of Equation (107) may be expanded as

-5 dp 1  ap 2 dp- 5 1 ap
- dC1 + I 7+ J - dC 1  (108)

IN4 k 1 2

The first and third integrals on the right side of Equation (108) can be approximated
by

1 )p 1-4(_bl) and ( (b2) (109)1(09

Here 14 and 5-2 refer to the average values of these parameters between these
points. The differential dC1 between 1-4 and 5-2 is simply the distance along the left
running characteristics, which we defined as bl and b2. Note that since the first
integral goes from 4 to 1, the integral ofdC1 is negative so it integrates to -bi.

The second integral on the right side can be integrated directly using the
Prandtl-Meyer Expansion. Referring to Appendix C, where

dp pV2
d-= 0 rj A

then

2 d
+ dO = 02- 01 (110)

Substituting Equations (109) and (110) into (108) there is obtained for the left side of
Equation (107)

P•5 dp ba1 8 )( p \
b =- 0-9+ b, (I!11jP X aCl1 -4 - -a ) }15-2fil
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Assuming that the streamline is close to the body surface so that the Mach lines Pl
and P2 are basically straight and the pressure varies linearly along the left running
characteristic, then the second integral of Equation (107) may be approximated by
use of the trapezoidal rule as

A,5f I cus(p)-I A2-I (ap) 2-c Ass+( (112)
4 A1  1 P 2

The last integral, of course, integrates directly to

fd o = 5 0 4
4 a 4

Again expanding in a Taylor series expansion yields

05 = 0 2 + b 2( +--

04=01 + b1 k---

or ( 80 aeo
aC 2  ac (113)

Substituting (111), (112), and (113) into (107) one obtains

- - ) + h -( -I - 11 \A ac 1 ! 2 1\ ac 1 A5-2 IAWCsP \aC 1

Sap (s-ss4) + aO 2 - bl( (114)+ +•c~ b 2

Note that 02 - 01 cancels on each side of Equation (114). Now divide through by bl
and take the limit as b1 --3 0 to obtain

(I ap) 'IG 2  ap a
A c 1 /1 .h I A -C1 'l i • Icos P , a 1

(S -s-4 2 ( a0 (115)

2j j h~ b (acac+.cos P2 a 1 , 2  1 i12 (a )I

Note that b2 / b1 and (s5 - s4) l b-, are not infinite but in fact are finite as will be shown
shortly. Now Equations (105) and (106) can be used to evaluate
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(~)and a
Substituting for these relations and carrying out the algebra, Equation (115) becomes

2cosi aP a_ _ sin(pl) sin(0)

1 -aa -X (S rb 2as as (I r

= 1 C~ODS (Pl) • -+ 2os(P" a a s a si

-- -P5 (116)

Sas -2bas as

2iW (\at as21

Now except for the matchpoint between a blunt nose and a conical frustrum

as )I ( af2 = (117)

since 0 is constant along conical segments. At the mat-chpoint

(_.•O\ - 1

(C.•IS RN

where RN is the radius of the spherical nose tip. Using the relation (117) and solving
for

(ap\
as )

ope obtains for Equation (116)

( '.LP S-S + 4as(u1j+- Isin~p )sin(9,) J vn( p ),n (0 1
(a1 2A as bP I (1 18)

I I 2 (1]8)\ as /2 b , 2 ces(p2) s3s-s

\ / A 2,\2 b4
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From geometry, referring to Figure 13 and the sketch below, one can write
approximately for small angles e

\ /% SS P1 + 1 -P2 -- 02

5 4 2 2 22
(ss- s 4) =1 2 - b1 ) +cb 2b

This can be written as

s5- s b2 2)

S4 I 2 1 )2 + b22 1 (1191)
b 1-

From conservation of mass, one can write

P1 V Ibl sin (pl) = P2V"b2 h2 :sn (P.)!

or

b2  PVYIsn (pIn

b! I P2V2 sin (p,) (120)

Using (120) in (119) there is obtained
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a5 S4 PlVin (Pl) 12

bl p2v2si
1

1+0(1~~+o- 12-02) (P 2V n sn (I-) \2 - (121)

p2V2 -sin (W2

Note that with Equations (120) and (121), Equation (118) can be calculated
independent of the distances bl and b2. The only distance that enters the equation is
r, which is the local body radius at a point in question. Defini.g

s5 - s4
- - F 1 b! and F 2 -b 2 /b 1

I b,2 2 1

where these expressions are determined by Equations (120) and (121), and

1 (aP\I I
F=1 1 JF,+4 cos OY~

F4  Z- sin (i 1) sin (0 1) - 2 sin (p2) sin (e2)
r I

F 5  F21 A 2 1

allows Equation (118) to be written in an abbreviated form as

ap F F3 + F 4 (122)

a's FS - FI/2.X2

This is our final expression we desired to relate the pressure gradient behind an
expansion point for use in the SOSET.
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Note that Equation (122) gives a first-order estimate for

(ap')
CIS /2

"based on all known quantities once the Prandtl-Meyer integration of Appendix D has
taken place through each turn. This equation is valid for real gases since no perfect
gas assumption has been made.

Returning now to Equations (35) and (36), use of Equation (122) in conjunction
with the Prandtl-Meyer solution of Appendix D now allows one to estimate the
pressure all along the body surface to second-order accuracy for real gases. With
entropy constant along the body surface, other thermodynamic and flow field
quantities can be calculated from Equations (D-27) and (D-28) along with

T = T (p,S)

M = Via

(123)

ap

P

z=P

pRT

Previous applications of SOSET have applied the pressure computed from Equation
(35) at the midpoint of all body sections (see Figure 6) for force and moment
computations. While this is the correct location for 2-D surfaces and cylindrical
portions of the body, it is not the most appropriate location for conical frustums. For
conical frustums, both on the nose and L ttail, the centroid of the surface area is

- 2 x. .x)1 3 - 3)-- 2
K = -3 (ri l r.)2 fr. +l r,) (124)

I .+ I1 1+

Here xi+ 1, ri + 1 are the x and r coordinates of the aft portion of the frustum and xi, r,
the x and r coordinates of the forward portion. Hence, for cylindrical segments and
two-dimensional sections (such as wings), the pressure computed from the Shock
Expansion is applied at the midpoint, whereas for conical frustums, it is applied at
the point given by Equation (124).
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.2.3.5.2 Matching Point Between MNT and SOSET

Several alternatives have been used in past literature to match the MNT to
SOSET on the blunt nose part of the body. The first alternative was that of Jackson,
et al. 20 where the body slope was assumed to be that for the maximum wedge angle
"allowed for an attached shock wave. Their results showed good agreement with
experimental data for 2.3 <-- M. but only fair agreement for lower supersonic Mach
numbers.. DeJarnette, et al.36 developed an empirical equation for the Mach number
to match MNT to SOSET. This approach gave improved results over Reference 20,
particularly at low supersonic Mach nu,,tbers. Reference 2 found that ubing a
constant value of M = 1.1 was about as good as the results of Reference 20.

Appendix B, which contains a derivation c ' he new methodology by DeJarnette
for pressures on spheres in hypersonic flows found a constant value of a match point
of 0., = 25.95.. The pressure at this point is defined by

Y M2
__ 2 CP,. (125;

where Cp, is given by Equation (41). Differentiating Equation (125) there is obtained

d p 2 dC

ds 2 d6 ds (126)
eq

But, for a sphere

d, s (127)
/N

Also, from Appendix B

dC dC
C Y M ,-v - I M-UM (12.8)

q, eq

C =C sin b (129)P -•t• eq

Using the relations (126) through (129) and recognizing that 8e. - 25 950 at the
match point. Equaton (116) just past the match point becomes
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1

I (. + " -- 1.05 Mp( 0.1676 C2 1.251C )2 (130)
as 2  as I RN RN Vi-! P POj

Pi, V1, M 1, and Cp . of Equation (130) are computed from Equation (79) and the MNT
of section 2.3.4.2.

Thus, in summary. at the match point the pressure is computed from Equation
(41). Downstream of this point, the solution is continued by use of Equations (35),
(36), (122), ana (130) where p,, is the value of pressure computead by a tangent cone
approach (given freestream Mach number and -ocal slope, given entropy along the
surface, compute the value of p, by the approach of Appendix C). The value of p2
comes from the Prandtl-Meyer integration in Appendix D.

2.3.6 Angle-of-attack Soiution for Body Alone

The aagie-of-attack solution will follow the general approach of References 2
and 23 for including angle-of-attack effects in the pressure distribution. However,
those references were not concerned with real gas effeets or with estimating
temperatures for aeroheating and thermostructural analyses. Hence, while the
general appro.crb- of References 2 and 23 will be used, modifications and additions
will be added " e the approach more reievant to the proolems at hand.

2.3.6.1 I-ainted-cone Pressure Distribution at a > 0

To start SOSET on a pointed body or to compute the Iccal properties on a cinicaJ
frustum, a pointed-cone solution for a > 0 is needed. One weld desire an
approximate solution, if good accuracy can be obtained, as opposed to a numerical
solution of partial differential equatiens 38 modified to include real gas effects. Tile
approach of Reference 23 for perfect ga_cs -is given by Equation (40). Equation (40a)
is independent of the type of gas and ia therefore appropriate in its present form for
computing the ACP( a, 0, 4), M.) foi a real gas as well. However, the approximate
relation (40b), for the pressure cocfficient on cones at zero angle of attack, ifi replaced
by the pressure computed ir Appendix C for cones in real gas flow. fludgins37
presents an approximate formula for the cone surface pressure for real gas
computations based on a fairly broad range of parameters including freestream
velocity, altitude, and cone half-angles. TI'e pressure formula is

= 1.4932(M .in'r 0 1.3017 form %•si,> . (131)

P C (13C

or since

4-5



NAVSWC TR 90-683

C 2 .p
PQ=O yM 2  p,.

then

(C 2 i.14932 ( 1I9U • 13017
C = M -I1nOc; I (132)

Reference 37 indicates accuracies oa" better thaL 1.5 percent for Equation (131). It
should be pointed out that for values of M, sin %_ - 1.5, real gas effects on pressure
are negl:gible anti Equation (4i9b) can '.e used instead of Equation (132). For "alues
of MW sin 0C > 1.5, Equation (132) replaces Equation (40bI.

Reference 23 used Equations (40) artd '40a) to estimate angle-of-attack effects
on the cone. A slightly more accurate method will Le used here. The method uses the
Equations (40) and (40a) but combines these relations in a Taylor series expansion in
angle of attack.

Assume small an•gles of attack so that the pressnre cc-efficient can be w-ritten in a
Tayler Series Expansion about a = 0 a& follows:

S~~C e,0tx,rj;,4' = C(6) -'+ . }• -

+ C6> + -- (I L

Now, if we use the methox'ology for the cone at angle of attack to evaluate the
derivatives of Equaiion (133), then referring to Equations (40) and (40a)

C P ,*. C -(-070 -sin2a sin20 CO4

Si- a 19 - - I- tan2O (-2 + 4.- (134)

Oifferent tia=ing Equation (134) and evaluating at a=0, ore obtains

I CP = -- ýn(20) cwi2o 0135)
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Here, the value of e is taken to be that that exists on the conical segment in question.
In essence, use of Equations (133) and (134) allows an analogous but more accurate
technique than a tangent cone approach to solve for the pressure coefficient on a body
at- angle of attack without recomputing local cone solutions for each point around and
along the body. Differentiating Equation (134) a second and third time, and
evaluating at a - 0, one obtains

a2 c

I 2 10= = 2F cs20136)

where 2- )(1 a 0 -12 4
F) 2-k -0 sin2

and
a3C S= + 8 _-4 (2 0) ws 4

I3 1=o (137)

Substituting (1-5), (136), (147) into (133), one obtains

C (u,Ux,r,4ý) - Cp(O) _ - 2a sin (26) cos4ý

+ (FcS20) a 2 + (3sn 20 ms4ý a (138)

Equation (138) indicates that the local angle-of-attack effects of pressure can be
estimated with the zero angle-of-attack st.lution already computed, the iocal value of
body slope and roll position, and the freestream Mach number and angle of attack.

The other question is how dces one compute other flow properties at the cone
surface? Consider t%.o cases. First is the case where the cone solution is being used as
the starting solution foi the pointed body. For that case, since entropy behind the
shock is not known, the flow field for the cone at a = 0 must be computed as in
ADpendix B. Since tha flow properties are cn*- outed numerically to the accuracy of
the thermodynamic curve fits of Reference 35, the pressure op- the cone surface is also
givan by this solution rather than Equation (132) or (40b). Now, since Equation (138)
gives the Cp due to a for various values of4 0, M, then a new Cp for4 = 1800
(windward plane) is computed with this equation. A new value of an effective cone
angle corresponding to the windward plane is then given by solving Equation (132)
for -in 0 with Cn repla.:ed by the value of p corresponding to Cp _ Then the cone
solution of Appendix B is repeated with a new cone angle. Ris gives the value of
entzopy, temperature, aud other properties as well. Since the flow between the body
and shock is isentropic, this value of entropy is held constant for the rest of the
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computations downstream. Once the value of entropy is known and Cp at other
positions around the body is computed from Equation (138), then

T(0,4,a) = T p(9,,a,. S (139)

can be determined from the Chermofit equations.

Other flow properties can be computed from the thermofit equations or energy
equations as follows:

P ('4'aQ) p(OP 'P ' 1' Sl

af4o =aiP (e4)a) sI (140)

I(,C ) e I

h = e +pp -p

M =Via (11-.)
V 2

a2P

p

Z P. p(P~r) )
The ,eccnd case Jf interest is when we desire to compute the flow properties for

a cone at angle of attack for use in a tangent cone approach where entropy has been
defined by the properties across either a pointed body or blunt body. In both of these
cases, the entropy is fixed at either the value in the windward plane of the starting
cone solution or that on the stagnation streamline behind a normal shock. For this
case, since entropy is known, the local value of p can be determined directly from
Equations (138). (40), t40a), and (40b) if M. sin OC < 1.5. Then, the values of
temperature, density, speed of sound, and internal energy can be computed via
Equations (139) and (140) as previously discussed.
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2.3.6.2 Body Angle-of-attack Effects

References 2 and 23 used so-called loading functions to include angle-of-attack
effects at a given point along the body The essence -f this approach was Fqdations
(40) and (40a). A similar approach will be used here except the slightly improved
pressure prediction method given by Equation (138) will be used. In essence,
Equation ,i138: can be used in a z-ngent cone approach to compute pressure at any
point on the body surface given an accurate value of pressure on the given body at
zero angle of attack. That is, at a given angle of attack. local body slope, psition
around the body, and freestream Mach number, pressures all around the body can be
computed from Equation (138). Knowing pressure and the correct value of entropy,
Equations (139) through (141) can be used to determine othier flow properties at the
body surface.

In using Equation (138), it was found that for blunt bodies at moderate angles of
attack, results in the leeward plaae were not as good as desired. To illustrate this
point, consider Figure 14, which shows the perfect gas pressure computations on a 20-
percent blunt Von Karman ogive at M. = 15 and a = 100. Figure 14(a) shows the
pressure coefficients predicted by Equation (138) in several planes around the body,
and Figures 14(b) through (d) compare the results in the 4) = 180°, 900, and 00 planes
to the exact Euler code. ZEUS.41,47 In examining Figures 14(a) through (d), two
points are worth noting: (1) the present method agrees reasonably well with ZEUS
computations in the d = 1800 and 900 planes. and (2) while Equation (138) works
well in the windward plane area for cones, it exhibits unacceptable behavior in the
leeward plane for blunted ogives.

The unacceptable behavior exhibited by Equation (138) in the leeward plane of
configurations other than cones comes from two phenomena: (1) for a blunt body, the
angle 0 is fairly large in the nose tip region causing the second term of Equation (138)
to be larger than desired in this region, and (2) on ogives as 0 goes to zero near the
shoulder, the second and fourth terms of Equation (138) go to zero whereas the third
term reaches its maximum positive value. This causes the increase in pressure past x
= I seen in Figures 14(a) and 14,Gd). It was found that a way to remedy both of these
problems in the 4) - 300 planes was to modify Equation (138) as follows:

1 Y .1 2a sn .120) cas 4

C a.O,4n =jp 3 (142)

Equation (142) is used for configurations other than sharp cones in the leeward plane
area. The results of this modification are shown in Figure 15(a) for pressure and
Figure 15(b) for temperature. Note that significant improvement in pressure
coefficient compared to the ZEUS code is obtained. The ZEUS code data in the
various planes are not shown on Figure 15 for clarification purposes. To show the
improved comparison, one can simply use the leeward plane curve (4) = 0*) of Figure
15 and compare this to Figure 14(d). Since Equation (138) is still used in the 4) =
1800 and 4) = 900 planes, Figures 14(b) and (c) remain the same. Also, use of
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Equation (142) versus (138) in the leeward plane area presents little change to the
axial force but improves the normal force and center-of-pressure predictions by about
5 and 6 percent, respectively. Compared to ZEUS computations, the errors in the
aerodynamic coefficients for wave drag, normal force, and center of pressure using
the present approach of Equations (138) and (142) is 5, 11, and 4 percent,
respectively. This is considered to be quite acceptable for an engineering type
aeroprediction code.

Past the nose portion of the body, standard Modified Newtonian Theory is used
to predict the pressures with the pressure coefficient assumed to be zero in the
shadowed region. That is

C = C sin2 1. ) for I -r0
' po eq e

C = 0 for & < 0 (143)
p eq

Since entropy is constant on the body surface, values of temperature and other local
properties are computed with Equations (139) through (141) as before.

2.3.7 Wing and Interference Aerodynamics

For high Mach numbers (M1 typically greater than 6), the method of References
2 and 21 will be used for real gas computations except that the pressures and other
properties will be computed using real gas as opposed to perfect gas computations.
References 2 and 21 used local slope techniques for the wing aerodynamic
computations. That is, MNT on the leading edge of the wing, tangent wedge from the
match point rearward on a compression surface, and PME on expansion surfaces. The
methods of section 2.3.4, Appendix C, and Appendix D, respectively, are used to
compute the local pressure coefficient and temperature at the outer edge of the
boundary layer. The match point between MNT and the tangent wedge is taken to be
Om = 25.950. Since this is a first-order as opposed to a second-order approach, there
could be a slight discontinuity in the pressure coefficient. This is due to the fact that
there is no pressure derivative to blend the pressure coefficients together as with
SOSET.

Use of a first-order as opposed to a second-order solution for the wings and other
lifting surfaces can be justified by the fact that these surfaces generally contribute
less than 25 percent of the axial force. Experience30 has shown that the axial force is
where second-order accuracy is required for pressure coefficients. On the other hand,
lift can be reasonably well estimated by a first-order theory. Since the wings
contribute significantly to the lift force, a first-order theory is acceptable.

It was found in References 2 and 21 that when local slope techniques were used
in a 2-D "strip theory" approach (wing is considered to be made up of several
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streamwise 2-D surfaces and total forces and moments summed from these surfaces),
no interference aerodynamics were needed. This was due to the fortuitous
cancellation of errors and the fact that 2-D pressures were higher than 3-D pressures
on most wings. At the wing root, the pressure was underpredicted due to use of
freestream versus local conditions, and at the wing tip the pressure was
overpredicted due to the same reason. The two effects canceled each other in an
approximate sense. A summary of the approaches for computing real gas properties
on bodies and wing bodies using SOSET is given in Figure 16.

I. BODY AT -=0

I. For pointed body, use cone solution for real gases of Appendix C to start solution. For
blunt bodies, use mINT of section 23-4 to start solution.

2. Use Equations (35), (36), and (122) to calculate pressure on conical segments along body
downstream of tip.

3. Use Equations (139), (140), (141) to calculate other flow properties on each conical
segment given the entropy from step I and pressure from step 2.

it. POINTED BODY AT a > 0

1. Computa (C1p), from Equation (138) and (Cp)= =0 from Equation (132) (or Equation (40b)
if M. sin0e :s 1.5). This gives Cp on cone at a > 0.

2. Compute effective e, from Equation (131) where Pc of Equation (131) is -eplaced by
that for tp = 1800 of step 1.

3. Use this value of 0 to obtain the cone solution for real gases and obtain the value of
entropy between the shock and body.

4. Compute T. a. e, h. V, M, y, Z from Equations (133), (134), and (135) around conical tip.

5. Use Equations (138), (142). (143), and Appendix D to compute pressures downstream
on body at a > 0.

6- Using Cp (a,8,04) from step 5, the value of entropy from step 3. compute other flow
properties from Equations (139), (140), and (141) at desired points along and around
body.

FIGURE 16. SUMMARY OF SOSET FOR REAL GASES ON BODIES
AND WING BODY COMBINATIONS
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Ill. BLUNT BODY AT a> 0 I
1. Compute conditions across not-mal shock and at stagnation point from Appendix C and

section 23.4.

2. Compute conditions up to match point from section 2-3.4.

3. Compute body solution at a = 9 as described above

4. Compute Cp ('.,9,) from Equations (138), (142), and (143).

5. Using the value of entropy 4rom step 1, pressure from step 4. compute other properties
from Equations (139), (140), and (141).

IV. WING

1. For blunt leading edge, compute flow properties at each point based on section 23.4.
For sharp leading edges, use wedge solution for real gases of Appendix C. Angles used
are local angles that indude angle of attack, local slope, and sweepback.

2. Use PME and tangent wedge aft of the leading edge using .ical slopes and freestream
conditions. This gives all flow properties directly based on the entropy of step I and the
pressure of PME and tangent wedge.

FIGURE 16. SUMMARY OF SOSET FOR REAL GASES ON BODIES
AND WING BODY COMBINAT7 0 NS (CONTINUED)

If one is most interested in correct values of wing lift and axial force and not as
concerned with high temperature effects, the 3-D thin wing theory of Reference 31
combined with interference factors is more accurate. This approach is still allowed as
-an option to the user in the aeroprediction code.2 -4

2.3.8 Viscous Consideraticns

The main intent of this report was to extend SOSET to include real gas effects
and hence allow computation of forces, moments, and surface temperatures at Mach
numbers above about 6. With the exception of surface temperature, these objectives
have now been accomplished. However, some additional comments are in order as to
how to include the viscous effects that occur on the wing and body. Ultimately, the
current technique will be transitioned into the latest version of the NAVSWC
aeroprediction code 2-4 and an updated version will be generated.
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The skin friction and body base pressure drag can be estimated by the same
techniques of Reference 30, Van Driest 11,39 and empirical methods, respectively.
The 2-D base pressure drag on the rear of wing surfaces is again empirical and the
same approach as that of Reference 31 can be used. The nonlinear effects of lift and
drag that occur due to higher angles of attack can be accounted for by the Allen-
Perkins Viscous Crossflow Theory.40

The other viscous consideration is that of temperature. Recall that one of the
main objectives of the present work was to calculate real gas temperatures at the wall
for use in heat transfer analysis. The temperatures calculated by the present
analysis are those that exist at the outer edge of the boundary layer and thus must be
carried to the wall and heat transfer analysis performed to get the true wall
temperature. This can be done with one of several state-of-the-art 44 engineering
techniques. However, without the more accurate real gas versus perfect gas
temperatures computed at the outer edge of the boundary layer, these estimates of
wall temperature will be considerably in error at higher Mach numbers. This in turn
could cause costly and possibly unnecessary design decisions. Hence, while the
present report is primarily focused on providing improved estimates of temperatures
at the outer edge of the boundary layer, those temperatures will make local wall
temperature and heat transfer computations (which are dependent on material
properties, insulation assumptions, etc.) much more accurate.

"r•he present inviscid analysis gives values of all the properties at the outer edge
of the boundary layer. They could thus be input to a boundary layer code and surface
properties calculated for heat transfer analysis. To aid in heat transfer analysis, an
approximate technique will be given for estimating two of the parameters needed as
inputs; the adiabatic wall temperature or enthalpy and heat transfer coefficients.
While the technique is not as elaborate as a numerical solution of the axisymmetric
or three-dimensional boundary layer equations, it does give an engineering
approximation. The results can then be compared to more accurate computations.

The aerodynamic heating to the wall is defined by

qw = PLVLCh(ha - h.) (144)

Here the subscript L refers to inviscid computations at the outer edge of the boundary
layer so these quantities are known. Thus, by computing the heat transfer coefficient
Ch and adiabatic wall enthalpy, the heat transfer to the wall for a given wall
enthalpy can be computed.

The adiabatic wall enthalpy means the change in enthalpy normal to the wall is zero.
That is

a = 0 (145)
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wherc y is normal to the wail. Solution of the boundary layer equations with this
boundary cond~tion will give the true adiabatic wall enthalpy. However, most
engineering computations are performed witb haw related to the recovery factor rc
as44

V2

h =h 2L (146)
a I. c'2

FeCr a .•urbulent boundary layer, r has been shown to be

2!3re = PrT

For a real gas, Prandtl number is a function of other thermodynamic properties and
must be found from the thermodynamic fit equations of References 34 and 35. That is

Pr = Pr (PL, TL) (147)

Thus, since PL, TL, hL, VL are all known from the inviscid computations, ha.. can be
computed from Equation (146). The adiabatic wall temperature is also defined in
many references by

Ty 1+r 2 T (148)

The perfect gas assumption can be somewhat compensated for in Equation (152) by

using the local value of yL as opposed to 1.4.

To compute the heat transfer coefficient, resort will be made to the reference
temperature method4 5,4 6 and Reynolds analogy.33 The reference temperature, T*, is
given by1 13

= 1 +O0.03 2ML + A58 + _1
TL T L (149)

Then the local skin friction coefficient is33

0.0592
Cf 'R0.2 (150)

W RN

Here
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PR VL S
* (151)

0* and u, * are evaluated at the local pressure and reference temperature defined by
Equation (149) from the real gas thermofit equations.34 ,3 5 That is

p(152)

1 = (153)

Reynolds analogy then gives

SC 2
I. - I.

m2 ) a (154)

Pr* is also evaluated from the thermofit ,quations where

P* - (155)

Finally, if one desires eathalpy as opposed to, or in addition to, temperature, then

h h (pL,'T (156a)

h = h (p,T) (156b)

can be computed once again from the thermofit equations since pressure is assumed
censtant across the boundary layer. That is

( p
-ay

Equatioas (150) and (154) are valid for flat plates in a turbulent compressible
boundary layer. They are thus the appropriate equations f-.r the wings and other
lifting surfaces on the configuration of interest. For t-he body, Reference 33 indicates
that Equations (150) and (154) should be mu txphed by the Mangler fraction, %/ 3.
Hence

0.103
rb IR (0157)
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CC

: (' (158)
S 2

Again it should be emphasized that the reference enthalpy or temperature and
Reynolds analogy are approximate engineering techniques. They have been used
extensively and have a theoretical foundation. The more rigorous alternative of
using the inviscid properties as inpvits to a chemically reacting tarbulent boundary
layer computation is considered beyond the scope of the prezent work.

3. RESULTS AND DISCUSSION

3.1 STARTING SOLUTIONS

It is of interest firsi to check the validity and accuracy vf the starting solutions
for both tha pointed and blunted bzldy cases. Figures i'7 and 18 compare the perfect
gas pressure and temperature predicted by the present methczi to the exact cone
solut;on of Jones3 f- -se.-eral conditions. The first of these conditions, M. = 10.6, 0c
= 15°' a = 10*, is the only or.e of interest as far as real gas effects are concerned.
However, the other lower Mach numbe-" and hbgher angle-of-attack cases are shown
to indicate the robustness of the preseent method for computing pressure and
temperature. Note that for ali four conditionz of Figures 17 and 18, good agree-aent
un pressure ard temperature is obtainred comparsd to the exact solution. in most
cases, accuracit-a of 3 percent or better are found for the conditions investigated to
date. An exceptioi, is the pressure prz-dic!ion at the bottom of Figure 18 where errors
in pre.'z-ure ofup to 15 percent are encountered. Comparing Fig-tres 17 and 18 shows
that the method gives slightly irnproved accuracy at the higher Mach numbers.

Figure 19 cnmpares the pi esent conical start ing solution with the exact results
from the ZEUS code 47 for MW = 15, a = 10°, 0c = 150. Both re3I and perfect gas
results are shown. Note that the approximate and ZEUS, real ard perfect gas
pr-.ssures are nearly identical (Figure 19(a)). This is as anticipated frora knowledge
of compression processes with respect to real gas effects. On the other hand, Figure
19(b) shows the far:e differences in temperature that can occur due to real gas effects.
In comparing approximate and exact temperature calculations in Fi-are 19(b;. it is
seen that the perfect gas resutts are within a couple rf perce,,t wh Zreas he real gas
deviates by up to 10 percent. TYhe ZEUS real gas Lemperatures are actually higher
than the perfect gas results in the leeward plane, which is not correct. The reason for
this is that the ZEUS ctre uses the real gas therwofit equations to obtain entropy
directly. On &-:! other hand, referring to Fipare C-15 and Jie discussion that goes
Vk itf. the figure, it is seen that obtaining entropy in this manner gives temperatures
about 2500 too high for cone angies of 15° and 250. Referring to Figure 19(b), this is
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the appruximate value of the difference betwe•-_ the ZEUS code and the present
computations. This ?.50W reduction would apply all around the body since this
incorrect value of entropy is held constant. this explains why there is a crossover of
the real and perfect gzs temperatures with the ZEUS computations in Figure 19(b).
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Figures 20(a) through (d) illustrate the accuracy of the Improved Modified
Newtonian Theory (IMNT) over MNT. The figures show the IMNT, MNT, and the
exact results from Reference 48. Note that the IMNT gives virtually identical results
to the exact computations. Although not shown, this excellent agreement in pressure
prediction holds true all the way to M. = 30. In the present method, the match point
between SOSET and IMNT is at 8 eq = 25.950 so that IMNT is used for 8 eq -> 25.950
and SOSET for values of 6 eq < 25.950. Knowing accurate values of pressure and a
good estimate of entropy should allow good estimates of other properties at the body
surface.

35 I_ I
___ ___Perfect

30 i- MNT

_I__t_ Perfect

25 1 NSWC!WOL TR 75-45

20 4

0. I5

10

0 1*

90 80 70 60 50 40 30 20 10 0
6eq(°

FIGURE 20(a). SURFACE PRESSURE DISTRIBUTION OVER
A HEMISPHERICAL FOREBODY AT Mý = 5
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FIGURE 20(b). SURFACE PRESSURE DISTRIBUTION OVER
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FIGURE 20(c). SURFACE PRESSURE DISTRIBUTION OVER
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3.2 PRESSURE GRADIENT USED IN SOSET

Before computing pressures and temperatures on general body shapes using the
section 3.1 starting solutions combined with SOSET, it is of interest to examine
Equation (36), which defines rl. Recall that qi is the exponent containing

asa)2

which is used in Equation (35) in the SOSET to determine the blend of Tangent Cone
Theory (TCT) and Generalized Shock Expansion Theory (GSET). To do this, a simple
biconic nose shape was considered as indicated in Figure 21. This allowed a simple
starting solution and then a computation of the properties around a turn of a given
AO = 02- 01 as shown in Figure 1. Results were obtained for the parameter

p=• as )2

under various conditions using the approximate method of Syvertson and Dennis, 19

the exact prediction by DeJarnette, 23 and the approximate present technique given
by Equation (122). Since the Reference 19 and 23 results were for perfect gas only,
the cases considered for comparison were for perfect gas. The results of this study are
presented in Table 1, which shows M. varying from 3 to 15, cone half angle from 5 to
20, and AO 20 and 50. Note first of all that the present approximation for

'P-. as

agrees very closely with the exact integration of Reference 23. The only difference
between the two techniques is the fact that the present method approximates the
integral of Equation (112) using the Trapezoidal Rule whereas Reference 23
integrates the entire equation numerically. On the other hand, the Reference 19
results neglect the integral of Equation (112) altogether. As seen in Table 1,
neglecting the integral gives reasonable results (within 10 percent) in most cases
shown where AO is small.

The most important aspect of the Table 1 results is the fact that rl becomes
negative quite often for Mach numbers of 5 and greater. This means that ri must be
defined and SOSET of Equation (35) reverts back to GSET or TCT; that is, p = P2 or
P = Pc- As a result of this dilemma, we investigated a different approach that would
allow us to take advantage of both Pc and P2- This approach defined p in the SOSET
as

P = PC - (PC - P() rll 1159)
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1PO/P,

9, = CONE HALF ANGLE P2 = PRESSURE BEHIND AN EXPANSION

0, = SHOCK ANGLE P, = PRESSURE FAR DOWNSTREAM ON A FRUSTRUM

FIGURE 21. BICONIC CONFIGURATION GEOMETRY FOR INVESTIGATING
PRESSURE GRADIENT AROUND A CORNTER (see Table 1)

TABLE 1. ESTIATES OF (r2 !p=) (ap I as ) 2 FOR VARIOUS CONDITIONS

M C AB Exact 2 3  Syv & Present (r2 /p-) (ap I as) 21
(deg) Dennis 19  Pc - P2)

3 15 2 0.0216 0.0209 0.0216 0.657 1.86 1.89
5 0.0478 0.0441 0.0478 0.622 1.50 1.58

5 20 2 -0.0148 -0.0142 -0.0147 -0.143 4.68 4.78
5 -0.0129 -0.0109 -0.0120 -0.077 3.56 3.73

5 10 2 0.0153 0.0147 0.0154 0.389 1.88 1.92
5 0.0341 0.0306 0.0341 0.359 1.34 1.43

10 15 "1 -0.0879 -0.0822 -0.0872 -0.209 8.29 8.71
5 -0.0952 -0.0785 -0.0896 -0.188 5.20 5.71

10 10 2 -0.0144 -0.0131 -0.0141 -0.097 3.96 4.11
- 0.0014 0.0033 0.0034 0.010 2.20 2.35

15 15 2 -0.2602 -0.2415 -0.2580 -0.206 16.73 17.99
5 -0.2840 -0.2310 -0.2672 -0.193 9.77 11.24

15 10 2 -0.0719 -0.0649 -0.0706 -0.141 7.17 7.68
5 -0.0420 -0.0294 -0.0351 -0.122 343 3.77

15 5 2 00061 0.0056 0.0063 0.068 2.04 2.13
5 0.0165 0.0135 0.0167 0.051 0.72 1.0
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where ll = 0 gives p = p, and ill = 1 gives p = P2 and 0 < q, < 1 gives a blend of the
two. This approach would allow a direct input of rl as opposed to a computation as
done in the past.

To investigate the Equation (159) approach, two cases were considered. The
first of these is a 20-percent blunt Von Karman ogive at M. = 15. Results of the
pressure computation are shown in Figure 22. In Figure 22, LMNT + P2 is when 'lh
= 1, IMNT + Pc is where ill = 0, old AP is the current aeroprediction code, and ZEUS
is the exact computation. In the current aeroprediction code, SOSET is implemented
with Equation (35) and when q becomes negative, p is set to Pc. As a result, note in
Figure 20 that the present results for ill = 1 are slightly better than the old AP
compared to the ZEUS computations. This is due solely to the IMNT. However, if one
were to use r'l =1, significantly worse results would be obtained.

2000
Mach = 151800  =0 IMNT + P2

1600 Alt=l10kft A

1400' - _"

00MNT + PC
1200 OLDAP

1000 ZEUS

D

0 0.5 1.0 1.5 2.0 2.5 3.0

LRN

FIGURE 22. COMPARISON OF VARIOUS PRESSURE PREDICTION TECHNIQUES
ON A 20-PERCENT BLUNT VON K.ARMAN OGIVE ,M.~ = 15,oa = 0°, h = 100k ft'
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The second case investigated to examine the Equation (159) approach is a
simple hemisphere forebody. These results are shown in Figure 23. Note here that
the IMNT + Pc and old AP results are inferior to the IMNT + P2 results compared to
ZEUS. This is even more reason for allowing ill to be input as opposed to computed.

To summarize the pressure prediction using SOSET, it was found that for Mach
numbers greater than 5, rl becomes negative quite often requiring one to revert back
to either TCT or GSET. Since this is the case, it is believed that the Equation (159)
approach is a better way to implement SOSET. A value of rl = 0 is recommended for
hemispheres or near hemispheres. For other configurations, a value of rh, = 1.0 is
recommended. This is the approach that is being implemented in the aeroprediction
code for Mach numbers greater than about 6. For Mach numbers between about 2.5
and 6, conventional SOSET is used, and for Mach numbers 1.2 to about 2.5, second-
order Van Dyke Theory3O is used.

3.3 CONFIGURATION RESULTS

To thoroughly investigate the current new methods for calculating real gas
effects, several configurations were selected that covered the typical range of missile-
type configurations. These include a 20-percent blunt Von Karman ogive, a 20-
percent blunt Von Karman ogive-cylindor, a blunt cone nose shape, and a sharp cone-
cylinder-flare configuration (see Figure 24). Exact solutions were also generated as a
basis for comparison of the present approximate engineering methods.

Figure 15 showed the results of using the IMNT + SOSET for the zero angle-of-
attack solution, applying Equations (138) and (142) to get angle-of-attack pressure
effects, and knowing entropy, applying Equation (139) to get temperature. Figure 16
was for perfect gas. Figure 25 further illustrates the present methodology for the Von
Karman ogive by comparing the pressure and temperature in the windward plane
(perfect gas) to conventional TCT and ZEUS results. Conventional TCT is where one
computes pressure at a given point on a body surface with the freestream Mach
number and the local slope with respect to the freestream velocity vector. Tne
standard Taylor McCall1 8 cone solution can be solved for perfect gases, Hudgins 3 7

solution for real gases or approximations to these solutions such as Equations (40b) or
(132). The IMNT was used on the blunt nose portion. Note that in comparing the
three theoretical approaches for both pressure and temperature, the present method
agrees closer with the exact solution than does the TCT.

Figure 26 presents the results for the same case as Figure 25 except here the gas
is equilibrium chemically reacting. Note that in comparing Figure 26(a) to 25(a),
little difference in pressure is noted (and indeed in the aerodynamic coefficients);
however, comparing Figure 26(b) to Figure 25(b), real gas temperatures are lower by
as much as a factor of 2. Figure 26(c) compares the present predictions to those of the
ZEUS code in three planes. Agreement on temperature in the critical windward
plane is within 4 percent.
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7000-
J ~~Mach = 15---

6o000 Aft = 100 kft IMNT + P2

5000 - IMNT + PC

OLD AP
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2000-

1000.

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

URN

FIGURE 23. COMPARISON OF VARIOUS PRESSURE PREDICTION TECHNIQUES
ON A HEMISPHERE FOREBODY (M. = 15,0 = 0°, h = 100k ft)
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FIGURE 25!h-- COM.%PARI-SON- OF APPROXIMAXTE AND E-XACT TEMPERATURE PREDICTION'
FOR A 20-PERCENT BLUNT VON KAR-MAN OGIVE QMj. = 15, a = 10', 0 = 1802, per-fect gasi
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FIGURE 26(a). APPROXLMATE PRESSURE PREDICTION ON A 20-PERCENT BLUNT VON
KAR.\M-AN OGlV"E FOR A REAL GAS K. z= 15, a 10 4,h = !00kft)
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The second test case considered is the blunt cone shown in Figure 24. While the
bluntness is the same as the Von Karman ogive, the aft part of the nose has a
constant angle so it is of interest to see how the results of the approximate method
compare with ZEUS computations. These comparisons are presented in Figure 27.
Figures 27(a) Lnd 27(b) present the windward plane pressure coefficient and
temperature conparisons between the ZEUS and approximate computations. In
examining Figure 27(a), ZEUS computations do show some slight differences in
pressure coefficient between real and perfect gas on the overexpansion region of the
blunt nose whereas the approximate results give basically identical pressures. Also
note that good agreement between the exact and approximate technique is evident
except in the overexpansion region. In examining Figure 27(b), good agreement in
temperature predictions between the two theoretical methods is noted. Even in the
overexpansion region where the disagreement is largest, the maximum deviation
frcm the exact results is only about 8 percent. On the maximum temperature
portions of the nose, the deviation is less than 2 percent. Also worthy of note is the
almost 5000° R lower temperature ofreal versus perfect gas computations.

0.8 I

0.7 ...... - 1._- - AP - Perfect

"0.6 1-_ ZEUS -Perfect
-• =_.0.6 i "-_ _ _ _ _ _ _ I _

CC 0.5 AP - Real

C -.4 . 'ZEUS-Real
__. 0.4 • ---__ _ _ _ _ _ _ __ _ __ _ _ _

z--
"" 0.3 .. .

us

lAU 0-2ouJI. , ,- -

0.1-4 -

- I0

0.2 0.4 0.6 0,8 1 1.2 1.4 1.6
AXIAL LOCATION, X (CAL)

FIGURE 27,a) COMPARISON OF APPROXIMATE AND EXACT PRESSURE COEFFICIENTS
IN THE WINDWARD PLANE OF A 20-PERCEN-1 BLUNT CONE N. = 1 5. , = 10-1
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FIGURE 27(d). COMPARISON OF APPROXIMATE -AND EXACT TEMPERATURES

ON A 20-PERCENT BLUNT CONE (M. = 15,a = 10%, REAL GAS)
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Figures 27(c) and 27(d) present the real gas pressure coefficient and
temperature comparisons in the 4) = 1800, 900, and 00 planes. The worst case
comparisons on temperature are in the leeward plane where the deviation is as high
as 10 percent. However, as already noted, the windward plane maximum
temperature deviation is only 2 percent or less. Figures 28(a) and 28(b) present the
blunt cone real and perfect gas pressures and temperatures, respectively, as a
function of Mach number for a = 0 and 150 using the approximate method. The
results presented are those near the base of the cone, x = 1.5, and in the windward
plane. Several points are worthy of note. First of all, Figure 28(a) reiterates the
negligible effect of real gas conditions on pressure at all Mach numbers. It also
illustrates the strong pressure increase as a function of angle of attack and Mach
number. Figure 28(b) illustrates how the real gas affects temperature as Mach
number increases. It is also interesting to note that while temperature differs by up
to several thousands of degrees due to angle-of-attack effects for a perfect gas, the
real gas difference is a maximum of 15000 at M. = 20 and a = 150 and a = 00.
Finally, as already discussed, the present approximate code gives very good
agreement for inviscid surface properties with the exact Euler solver, ZEUS.

3500O
PtN -- I'm

300Alp = 0, Perfect3000 . . ....
X 1.5 .0-

2- Alp = 0, Real2500 :
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1500 ... ..
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: .. 'TZEUS

5o0n __ __.__ _ _ , _

500-

0 1!
4 6 8 10 12 14 16 18 20

MACH NUMBER

FIGURE 28,a,. PRESSURES PREDICTED BY APPROXIMATE METHOD ON A 20-PERCENT
BLUNT CONE ASA FUNCTION OF MACH NUMBER ,4 = "8O,8x = 1.5, h = 100kfti
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ON A 20-PERCENT BLUNT CONE AS A FUNCTION OF M-ALCH NU-MBER

(4 = 1800, x = 1.5, h = 100k ft)
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The third case considered is a cone-cylinder-flare (see Figure 24). Results of the
pressures and temperatures on this configuration are shown in Figures 29. Figures
29(a) and 29(b) present the pressure and temperature in the windward plane
respectively as a function of distance along the body surface. Note the present theory
shows no overexpansion behind the shoulder due to the fact that MNT is used to
estimate pressures around the surface. Also note in Figure 29(b) that for the conical
surfaces, real gas ter-peratues are lwer by only about 10 to 15 percent, whereas on
blunt nose configurations at the same Mach number, temperatures can be as much as
a factor of 2 lower for real ccmpared to perfect gases. Figure 29(c) presents the
pressures around the cone-cylinder-flare configuration at three x stations
corresponding to a point on the cone, cylinder, and flare. Figures 29(d), (e), and (f)
present the temperature comparisons for the same x stations of Figure 29(c). Note
that in Figures 29(e) and 29(f), values of temperature are constant in the leeward
plane area due to tb'- Newtonian assumption that cp = 0 in shadowed regions.

1000
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8001-

800AP- Equilibrium
700J . .,

,, 500 . ..... . .
S 1

m 400

300J

400- -----.... . ...
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0 2 3 4 5 6 7 8 9 10
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FIGURE 29(a). PRESSURE DISTRIBUTION ON A 100 CONE-CYLINDER-FLARE
= 15, a = 10', = 1SO
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The final case considered is the 20-percent blunt Von Karman ogive-cylinder-
fin configuration shown in Figure 24. The angle-of-attack 00 pressure coefficient and
temperature for real and perfect gases are shown in Figure 30 for M. = 15. Note
again the excellent agreement up to the location of the tail fins. This figure was
primarily shown to indicate that while the present approximate engineering code is
quite applicable for preliminary design, it does not have the physics included for
detailed interaction effects. These effects could include bow shock waves intersecting
fins, or fin shock waves intersecting the body. These interaction effects can cause
local "hot" spots and more detailed analysis codes such as ZEUS or Navier Stokes
solvers are required. The fin interaction effects are shown by the ZEUS results at
x = 9 calibers to the end of the body.
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The emphasis to this point has been on accurate values of inviscid surface
temperature to allow accurate heat transfer analysis. In getting accurate values cf
heat transfer, accurate values of pressure prediction were i equired. These accurate
values of pressure prediction also give good force and moment predictions. The final
Figure 31 illustrates force and moment predictions as a function of Mach number and
angle of attack compared to the ZEUS code. Note that the axial force only includea
wave drag since ZEUS at present is an inviscid code. Accuracies on wave drag and
normal force are within 10 percent, and center of pressure near angle of attack zero
within 8 percent of the body length compared to the full Euler code. About half of the
error in wave drag is due to the high fin alone predictions using the present strip
theory approach, Figure 31(a). Note that the theory does predict some siight changes
in forces and moments due to real gas effects. However, except for very speziaize-d
problems, it' is believed that these effects can be neglected, particularly in an
engineering code such as the aeroprediction. However, as aiready noted many times,
heat transfer analysis definitely needs to consider the real gas effects when flying at
any appreciable time above M. = 6 to 8.
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4. SUMMARY

New methods have been developed to compute inviscid surface pressures and
temperatures for both perfect and equilibrium chemically reacting flows on both
pointed and blunt bodies of revolution. These new methods include an improved
Shock-expansion Theory, an improved MNT, and an improved method for angle-of-
attack effects. Comparison of Lhese approximate engineering techniques to exact
inviscid computations using a full Euler code showed the following:

1. Agreement on the critical windward plane inviscid temperatures generally

of 4 perc'-nt or better.

2. Agreement of inviscid surface temperatures of 10 percent or better.

3. Agreement of axial wave drag and normal force of 19 percent, and center of
pressure 8 percent of body length. For the body alone, wave drag estimates
are generally within 5 percent of exact Euler computations.

A new real gas formulation for pressure gradient behind a corner was derived.
However, in implementing this into the SOSET it was found to be of little value. This
is because at high Mach numbers the exponential decay term used in the SOSET
becomes positive requiring SOSET to revert back to either GSET or TCT. It was
shown that neither of these theories was best for all ceses and, as a result, a user
input to allow a choice of which method to use was considered the best alternative for
use of the traditional SOSET.

With the new technology developed, the NAVSWC aeroprediction code can now
be used to give engineering estimates of inviscid surface temperature for any Mach
number of interest. These approximate temperatures can then be used as inputs for
more detailed heat transfer analysis.
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6. SYMBOLS AND DEFINITIONS

a speed of sound (fPsec)

b distance between body surface and streamline

C Cl2 eft and right running characteristic coordinates

Cf. local -kin friction coefficient

Ch heat transfer coefficient

Cp pressure coefficient

CP, Cy specific heats at constant pressure and volume

e internal energy (f-21sec2 )

H total enthalpy (ft2lsec2)

h specific enthalpy (ft2lsec2 ) and altitude (U1)

ha, adiabatic wall enthalpy

k Kelvin temperature (deg)

M Mach number

p pressure (lb,.t2)

P. Prandtl number

q heat flux

qw heat flux at wall

R gas constant f[for air R = 1716 (ft-lb) I (shug-TR) ]

Rn PReynolds number

rC recovery factor

S entropy (ft-lb) / (slug -R)

s. n. t strea.mline coordinate system
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T temperature (degrees Kelvin or Rankine)

Tp temperature of a perfect gas

TR temperature of a real gas

t time

U1IU2 velocity (ftisec)

V total velocity

Vr, V0  velocity along and normal to a conical ray

V xmaximum velocity

x, r, 4 cylindrical coordinate system with 4 = 0 = leeward plane

x, y, z rectangular coordinate system

Z compressibility factor (= I for a perfect gas)

u angle of attack (deg)

y ratio of specific heats (Cp i C,)

angle used in Newtonian Theory (= angle between velocity vector
and local body slope)

0 local body slope

BC, Os cone half-angle and shock angle, respectively

A pV2/ p

Mach angle, p = sin -1 (1 / M)

coefficient of viscosity

v Prandtl-Meyer angle (deg)

p density (slugs/ft3)
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G shock wave angle (deg)

In 'qi exponent used in Second-order Shock-expansion Theory

Subscripts

aw adiabatic wall

c cone

d dissociation energy

e electronic excitation energy

f frozen flow

L local conditions

m match point

o total and reference

r rotational energy

s stagnation conditions

t translation energy

v vibration energy

freestream conditions

Superscripts

reference conditions
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APPENDIX A

DETERMINATION OF ANGLE 8 USED IN NEWTONIAN THEORY
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DETERMINATION OF ANGLE 8 USED IN NEWTONIAN THEORY

Refer to the nomenclature of Figure A-1.

z
A z

e. A
AA

--

,A' e. #%

C 

r

y 0 ridxWHERE: r2 y 9 + z2

FIGURE A-L NOMENCLATURE USED FOR DETERMINATION OF ANGCLE 66

Note that from the definition of the dot product of Lwo vectors, one can write

An ) (A-)

Also

v (V,:CSQ I+ (Vý sin (A-2

and

es= -s~id)+ (sin 4P sO)i+ (rst cose) tk

A-3
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ON p A
e = e osOI + siOj1unj + snOws~k (A-4)

AA A-= cos~j - sin4k (A-5)

Substituting Equations (A-2) and (A-3) into Equation (A-1) and performing the

indicated operations, one obtains:

sin8 sin0coso -qsanos*wsO (A-6)

This is the angle that is used for a general three-dimeasional (3-D) poin, nn a blunt
surface at angle of attack in the Newtonian Theory. Here i = 0 is the leeward plane
and i = 180 is the windward plane. If the revers.- is truc (as many ref&r ences use),
the negative sign of Equation (A-6) becomes positive.

A-4
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APPENDIX B

PRESSURE DISTRIBUTION ON A SPHERE
IN HYPERSONIC FLOW
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PRESSURE DISTRIBUTION ON A SPHERE IN HYPERSONIC FLOW

The Modified Newtonian pressure distribution has been used by numerous
investigators to predict pressure distributions on blunt-nosed bodies in hypersonic
flow. A close examination of this method for a sphere showed that for M. > 3.5 it
overpredicts pressures for x/11- < 0.5625 and underpredicts pressures for most of the
region beyond x/RN = 0.5625. Here, x is the axial coordinate with x=0 at the
stagnation point, and R% is the radius of the sphere. However. the Modified
Newtonian method predicts the correct pressure at x/RN = 0.5625 for all 3.5 < M. S
30. Figure B-1 shows these features for M. = 3.5 and 5, but they hold also for the
higher Mach numbers.

A second feature of the Modified Newtonian (MN) method is that at x1%N -
0.5625 the ratio

1

dp / pdP 12d8 I P ~d-- - MN

d5eq d6eoM

varies very little with M.. The value of

dp

eq

was obtained numerically from CFD data in Reference B-1. The angle of 8 eq is the
inciination of the surface with respect to the axis of the sphere, where Sq = rn2 at the
stagnation point. Table B-1 shows the numerical values.

TABLE B-1. VALUES OF PRESSURE GRADIENT PARAMETER
AS FUNCTION OF MACH NUMBER

1

AM P lN t - 0.5625
dieq d8eq12N

1.469
5.0 1.5i9

10.0 1.516
20.0 1.523
30.0 1.524

B-1 Mor.-ion, A. M., Solomon, J. M., Ciment, M., and Ferguson, R. E., Handbook of nviscid Sphere
Cone Flowfields and Prssure Distriiutons: VoL 1, NSWC:VOL TR 7545, December 1975.

B-3



NAVSWC TR 90-08
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Thus, the position x/RN = 0.5625 will be called the match point since the pressure is
Modified Newtonian pressure and the pressure gradient can be calculated from the
ratio

dp / dp

d8 /q Id8 IMN

It has been determine. that using a numerical value of 1.5 for this ratio for all MD >
3.5 gives accurate results.

For the region 0 -< x RN < 0.5625, a more accurate prediction of the pressure
can be calculated from the equation

ACp =ko eq (oSeq - a M (B6i)

where

AC= (CP)MN-C

and (6eq )m = 25.95, which is the value of 68q at x/PR. = 0.5625. Both k and m are
constants to be determined. Note that Equation (B-1) gives ACp = 0 at both x/RN = 0
and x/RN = 0.5625. in addition, it gives d(ACp) / d 8q = 0 at x!, 0. It now
remains to determine expressions for k ard m.

The derivative of Equation (B-1) is

= ks•n•8 ca-ýS ( + 1) s6 --Sb 6 • -n C (R-2)
dSeq eq, e; *eq

Apply Equation (B-2) at the match point, x/1 = 0.5625

d iAC) _ e Ld. dL, C '(PB3

eq 8 1 k 5 " N eq

Now at the match point, the derivative

dC
P

dS
eq

can be calculated from the ratio given earlier, i.e.,

B-5
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d[ dP I1

d eq 1.5 Td eq 1

which can also be written as

d 1. 2 dC 1I

where

(CP)MN = Cp sin 28q

Equation (B4) can be used in Eqaation (B4) but that only gives one equation for the
two unknowns, k and m. Thus. an additional equation is needed.

A third feature of Modified Newtonian pressures is obtained by observing that
the data in Reference B-I show that ACp is a maximum at x/RN = 0.25 for all Mw >
3.5. Thus, Equation (B-2) can be used to get

d (AC) )I
0 = ktn 8 Uos-8 (m+ s - oeq)M 1 --

d8 eq eq " Seq flc
eq

Apply this equation at xrN = o.25 to obtain

in==D&e 2.78 (B-7?)

Finally, substitute Equation (B-4) into (B-3) and apply at the match point (xi/RN

0.5625, (6eq)m = 25. 5) to get

(dCp 1. 2+ 15 C +_ P 2

d8eq _ eq (1-8)

Sir.(8 eq ) V (8 e

All terms on the right side can be calculated for a given M. Substituting for the
parameters of Equation (B-8) at the match point where (4eq)M = 25.95V, one obtains

B-6
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1.124 1=
k 2.416 C- 4605 + 2 j (B-9)--

VWith m and k determined, an accurate- Cp can be calculated from Equation (B-i% for
xfR, _ 0.5625.

This method has been applied to a sphere for 3.5 :- M. 5 30. The results are
compared to CFD results from Reference B-I for x/RN : 0.5625. At Mw = 3.5 the
maximum error in pressure is 3 percent at x/R, = 0.25. For Mw > 3.5, the maximum
error is less than I percent and in most cases less than 0.5 percent. In contrast, the
Modified Newtonian pressures had maximum errors from 7 to 10 percent. Equation
(B-i) can be used for x/RN up to about 0.7 with errors less than 3 percent. A better
prediction for x/RN > 0.5625 can be obtained by using the second-order shock-
expansion method.

The new method gives a much mere accurate prediction of surface pressures on
a sphere in hypersonic flow than Modified Newtonian Theory. The additional
computational effort is negligible for even the smalles PCs. Results of this new
technique are shown in the Results and Discussion section of this report.
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APPENDIX C

COMPUTATION OF PROPERTIES ACROSS SHOCK WAVES
IN F1ROZEN AND EQUILIBRIUM CHEMICALLY

REACTING FLOWS
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COMPUTATION OF PROPERTIES ACROSS SHOCK WAVES
IN FROZEN AND EQUILIBRIUM CHEMICALLY

REACTING FLOWS

To compute the flow over 2-D or 3-D configurations using the Shock-Expansion
Theory requires an initial starting solution. This solution is provided by computing
the flow field variables across a normal (in the case of a blunt-nose body or blunt-
leading-edge wing) or oblique shock for sharp-nosed bodies or wing leading edges. If
the flow is low enough in Mach number so that real gas effects are negligible or if one
is only interested in approximate prediction of forces and moments, a perfect gas can
be aswumed and the shock wave relations of Reference C-1 can be used lirectly. This
last situation results from the fact that real gas effects have a fairly small effect on
pressure (usually less than 10 percent) but can have a large effect on density and
temperature. Since we are interested in temperature profiles along the bady as
inputs for structural analysis, we must consider both normal and oblique shock wave
computations in real gases.

NORMAL SHOCK WAVES

The conservation of mass, momentum, and energy - Equations (43), (44), and
(45) of the main text of this report-for steady (a'at = 0), adiabatic (q = 0) flow with
no body forces (f = 0), reduce to the following for flow across a normal shock wave (see
Figure C-1):

pli 1 = p2U2  (C-1)

U 2 =2 -2)
Pi -+ Pl 1 = 2+ P2U2""

h + 22 1 + 2 (C-3)

Solving Equations (C-2) and (C-3) for p2 and h2 , while using Equation (C-1), there is
obtained

P2 = P1 + P 1 U1 - P_ P2) (C-4)

h2 =ih + U12/2 1 - (pp 1 P 2 , C-5)

C-3
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PI'TI.S1 U1 3P U2  P2.T.Sz
P1.M.a.1  P. M2.aa2
hi hz

NORMAL

FIGURE C-1. NORMAL SHOCK WAVE FLOW

Note that all terms on the right-hand side of Equations (C4) and (C-5) are known
exept for p.. To solve Equations (C-4) and (C-5), one guesses a value of p, / p2. A
value of 0 or 0.1 is adequate. Equations (C4) and (C-5) are then solved for p2 and h2.
Knowing p. and h2 , a new value of p2 is computed from the equilibrium chemistry
model discussed in the Simplified Procedures for Air section (section 2.3.2). New
values of p2 and h are then computed and, once again, new values of P2 computed
from the equilibrium chemistry model. This process is repeated until the change in P2
is small and within the desired accuracy for convergence. This then defines the
correct values of p2, h2, and p2, behind the shock. T2, a. can be computed from section
2.3.2 once e_ is computed from Equation (67). The compressibility factor Z is defined
as:

Z= P pRT (C,-6)
pRT

For a perfect or thermally perfect gas, Z is one but for a real gas that undergoes
chemical reactions, Z represents the level of dissociation that takes place. Since R is
the universal gas constant and p, p, and T are computed by Equations (C4) and (C-5)
and Section 2.3.2, Z is known. Also

U2 (p~IpU 1  (C-7)

y= a2 p/p (C-8)

M2 U21a2 (C-9)
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The Normal Shock Solution for Equilibrium Air is given in References C-2 and C-3.
Figure C-2 gives T2 / T1 as a function of freestream pressu-re and velocity. Note the
large difference between the perfect and real gas temperatures as temperature
increases and as atmospheric pressures decrease (higher altitudes).

100.0

1: P1 ".1 ATM
CALORICALLY PERFECT GAS-.

,I :0 .0 1 -. . . ..- - - -- . .--- - -

7 00o - . ......1 ... ......... 0. ...... ... - . . ....... ... .......... .. ..... .. ....I .. ..

* o

60.0.............. ........ P-.01A-
-YT- I S

8 00 .. .... ... -. . . . . ... -. ........... -".... . . ...... . .. .. .... ....... . . . . . . .. / - P - .0 A T

--
I

60.0 . .0.. 4.0. 6.0 80 4.0 I - 0 0 160
ul (KMS)

FIGURE C-2- INFLUENCE OF FREESIREAMI PRESSURE AND VELOCITY ON
NORMAL SHOCK TEMPERATURE FOR EQUILIBRIUM AI (T, = 225-K

C-5



NAVSWC TR 90-683

For the flow field over a blunt body, the properties vary between the shock and
body. Hence, frozen flow would consist of computing real gas properties immediately
behind the shock and then treating the flow field as a perfect gas thereafter, with
cons.ant values of y = Yf and compressibility factor Z = Zf. Equilibrium chemically
-eacding flow would allow different values of these parameters as a function of
distance between the body and shock. However, if one is only interested in properties
along the body surface from a method such as Modified Newtonian combined with
SOSET, only the stagnation streamline that wets the body surface needs to be
examined. Reference C-2 showed that, along the stagnation streamline, y and Z
change very little. Hence, effectively the flow is frozen at values that exist behind the
shock (within 1 or 2 percent) between the shock and body stagnation point. This
a-sumption will be made in the present work.

OBLIQUE SHOCK WAVES: 2-D OR WEDGE FLOWS

Examining Figure C-3, it soon becomes clear that one can use the previous
normal shock relations (C-I) through (C-5) to solve for flow parameters behind an
oblique shock if the U1 and U 2 components of flow velocity normal to the shock wave
are replaced with their equivalent components normal to the oblique shock wave.
That is

U = U.-sin o (C-10)

U2 U2sinto- 0; (C-11)

Here, 0 is the flow direction which, for attached flow on a wedge, is constant and
equal to the wedge angle. Equations (C-1), (C4), and (C-5) now become, with these
substitutions

P USano -- p 2 U2 -,--in (o - 0) (C-12)

U T 2 a
h 2 = h1 + 1 [1 - (plip (C-14)

Also, since Ut, = UL2 from the conservation of momentum, then
Ulcoso = U.Cos(o - 0)

or

U1 _ cos(o - 01 (C-15)

U, cos (o)

C-6
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Combining Equation (C-15) with Equation (C-12), there is obtained
Pi tan (o - 0)

= (C-16)
P 2  tan a

Expanding tan (o - e) using a trigonometric identity, going through some algebraic
manipulation, and taking the weak shock solution, one obtains

1- 2tano = (P 2 1P I -- )tanl,;-- '% -p 2 \ _ -- 2 (C-17)

Ut. a Ut2 FROM CONSERVATION OF MOMENTUM
"-I a U1 SIND; UUa U2 SIN (O) 40C WAVE

U1 ,tn U0 2

00

FIGURE C-3. OBLIQUE SHOCK GEOMETRY FOR A WEDGE

To solve for the flow field properties, a value of plip2 is once again guessed. The shock
angle is computed from Equation (C-17). With this value of o and Pl/P2 known, p2
and h2 are computed from Equations (C-13) and (C-14). A new value of p2 is
computed from the process of Section 2.3.2 and an iteration takes place until
successive changes in p2 are within some error bound. This defines the values of a,
P2, p2, and h2 behind the shock. T2 and "a" are then computed from Section 2.3.2 and
Z, U2 from Equations (C-6), (C-7) and (C-15). Local Mach number and isentropic
exponent y are then computed from Equations (C-8) and (C-9).

C-7
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It should be pointed out that the isentropic exponent, defined as

[a(in P)
Y = 1a(--" p) is•..•, = ,

is the same as the gamma of Equation (C-8). This is different than the "equivalentC
gamma defined in Reference C-4 as

h

Here the word equivalent in quotes is used because Y = j for a perfect gas, However,
for a real gas where dissociation is present, the isentropic exponent used in true speed
of sound computations is different than the "equivalent" gamma.

Since the body is a wedge, the flow properties behind the straight shock are
constant throughout the flow field. Hence, the pressure p2 is also the pressure on the
surface which can be used to compute forces and moments. Also, Frozen and
Equilibrium Chemically Reacting Flows give the same results since all properties are
constant between the body and shock. Figure CA gives the results of the shock angle
versus wedge half angle at an altitude of lOOK ft for two velocities for a perfect and
real gas (either frozen or equilibrium chemically reacting). Note the small change
between the perfect gas and real gas at small flow deflections and Mach numbers.
Figure C-5 is an example of the shock waves for a particular case where the
conditions are such to show a large difference between perfect and real gas computa-
tions. This same simplified flow field does not hold true if the body is axisymmetric
as will be discussed shortly.

Figures C-6 through C-8 show the temperature, density, and pressure for the
same 100K altitude condition at two velocities as a function of wedge angle. Note the
major effect of real gases is in the temperature and density at higher velocities and
large wedge angles. The pressure is only affected slightly.

C-8
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FIGURE C4. DEFLECTION ANGLE/WAVE ANGLE VELOCITY DIAGRAM
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ALnWTDE a17C kf SHOCK WAVE FOR
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T-4r SHOCK WAVE FOR
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FIGUREC-3. COMPARI&SON OF OBLIQUE SHOCK W&VES FORA CALORICALTLY
PERFECT GA-SVYERSUS AN EQUILIBRIUM CHEMICALLY REJACTING GAS
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FIGURE C-6. TEMPERATURE IN THE SHOCK LAYER FORA WEDGE
(ALTITUDE = 100k ft)
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FIGURE C-7. DENSITY IN THE SHOCK LAYER FOR A WEDGE
(ALTITUDE = 100k ft)
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FIGLRE C-8. PRESSURE LN THE SHOCK LAYER FORA WEDGE
(ALTITUDE = 100k ft

OBLIQUE SHOCK WAVES: AXISYMMETRIC CONICAL FLOWS

The flow field between the shock and conical surface is not constant here as was
the case with the wedge. However, flow properties are constant along rays
emanating from the conical tip for a perfect, frozen, or equilibrium chemically
reacting gas. Furthermore, the entropy is constant throughout the flow field between
the shock and body for these flow types. The continuity and momentum equations in
spherical coordinates for this type of aow becomeC-5

d p V( + VS9 Dte (C-18)

dV r =(C-19)
do Be

2 V9 2
- = ( -- 2a22V r + VeLot Ve ) (C-20)

dO a2 2 aV

C-12
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Figure C-9 shows the geometry and nomenclature used. These equations represent a
set of three first-order ordinary differential equations for five unknowns. The
remaining two equations come from high-temperature thermodynamic properties

p = p (p, S) (C(21)

a =a (pS) (C-22)

Perfect Gas

For a perfect gas, Equations (C-21) and (C-22) are replaced by

S(C-23)

Ya (C-24)

Substituting Equations (C-23) and (C-24) into Equations (C-18) through (C-20) and
performing the algebra, one arrives at Equation (30) of section 2.2.2. The discussion
on the solution of this equation was aiso given.

STREAMUNE

r, Vr O;

ec
0

FIGURE C-9. OBLIQUE SHOCK GEOMETRY F3R A CONE
(SPHERICAL COORDINATES)
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Frozen Flow

For frozen flow, the gas is allowed to change chemical composition across the
shock indt&ntaneously, and the values of y and Z are no longer constant across the
shock. Also, since the flow angle behind the shock is not constant and equal to the
tone angle, as was the case for a wedge, Equation (C-17) is not the most appropriate
equation to use in tkf soiution process since this involves three unknowns. Using
Fa+.ns (C-13) !.nd (C-14) instead requires only a double iteration to solve
Equations %C-18) through \C-20) from the body to the shock. The solution proceeds as
follows:

1. Guess values ofo and p1'p2. Perfect gas values are adequate.

2. Solve Equations (C-13) and (C-14) for p2, h2.

3. Solve the appropriate form of Equation (73) for a new value of P2 [i.e., P2 =
p2 (p2, h2) or P2 = p2 (p2, S) ifS is given from blunt b- iy flow].

4. Repeat steps 2 and 3 until successive changes in p2 are within some
acceptable tolerance. This defines the values of p2, p2, h2 behind the shock
of guessed angle a.

5. Calculate values of "a' and T behind the shock from the appropriate
thermodynamic curve fit equations and a value ofZ = Zfand y = yf from

P2

Zf- p2RT2

and

f 2 _p

The values of if and Zf are fixed at these values for the solution of Equations
(C-181 through (C-20).

tR•call from the wedge flow computstions that the values of y and y, are
different. The question arises ar. o which to use for frozen flow. The
answer is that either can be used or, for that matter, other options for frozen
flow could be used. However, to be consistent with the use of total
temperature, pressure, and derwity relationships along the body where the
flow is in fact isentropic and the isentropic exponent y is used, the isentropic
exponent V is the one that will be used for frozen flow computations.)

6L Define initial values of Vr and V0 behind hr -hock from the momentum
and energy equations. That is

C-14
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(V) 2 = V1 coso (C-25)

I

V h2  
(C-26)

7. Numerically integrate Equations (C-18) through (C-20) from the shock to
the body where 6 = 0, using Fourth-Order Runge Kutta. During the in-
tegration, new values of p, Vr, Vo are computed at each AO interval. At
each interval, new values of a2 and p must be computed based on the values
of p, Vo, Vr, These new values are

a2=(YfP-)(V2 -V2_VO) (C-=

Yf P (C-28)
2

a

8. At the body, check the value of V 9 . If it is not zero, guess a new value of a.

9. Repeat steps I through 8 until VO is zero to some acceptable tolerance.
Once this has occurred, the entire flow field between the shock and body is
defined. Only the values of properties at the body surface are saved as they
are all that will be used in the Shock Expansion Theory.

10. Calculate the entropy behind the shock from the appropriate thermofit
equation. This value of entropy will be used later in the shock expansion
theory. If entropy values are known from the blunt body stagnation
solution, this step can be omitted.

Equilibrium Chemically Reacting Flow

For equilibrium themically reacting flows, the computation process illustrated
for frozen flows is used with two exceptions:

i. The values y and Z are allowed to vary between the body and shock.

2 The values of "a- and "p" at each point in the computation process are
computed via thermoft Equation (73) based on the latest computed value of
"p" and the value of"S" which is constant behindt the shock. That is

a =a(pS)
(C-29)

p = p (p, S)

C-35
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Both of these relations are given in Reference C-6 and they replace the equations for p
and a in the frozen flow computations discussed previously.

Knowing the values of Ve, Vr, S, p. a, and p during the solution process of
Equations (C-18) through (C-20), the remaining thermodynamic properties can be
computed as follows.

h=(V EM V2 /2 (C-30)

e = h-p/p (C-31)

V2 + V212
M= 1 rI (C-32)M=-

a

T = T(p, S) (C-33)

Z pRT (C-34)

a 2
y=hle;y =- (C-35)

P

To illustrate the effects of real gas computations on conical shapes, Figures C-10
through C-13 have been prepared. These figures duplicate the results of Reference
C-5 within numerical accuracy. Results here are similar to those of the wedge case
presented previously except the frozen and chemical equilibrium cases are not the
same. The trends of decreased shock angle, higher temperatures, lower densities,
and near constant pressures of real gases compared to perfect gases holds true for the
cone also. These trends will not be true for PME flows considered next in Appendix C.

Before proceeding to discuss PME flows, discussion of a problem that occurred
in the solution of ecuilibrium chemically reacting flows over cones using the curve
fits of Reference C-6 will be given. Since entropy is constant between the shock and
body for a wedge or cone and is constant along streamlines for equilibrium flows, it
seemed natural to use this as one of the independent variables [see Equation (C-29)).
However, when attempting to compute the entropy from internal energy and density,
it was found that slight discontinuities (or jumps) occurred in the 2ntropy values
between various segments of the curve fits in Reference C-6. These jumps and
attempts at smoothing the solution are illnstrated in Figure C-14. Unfortunately,
when both the actual and smoothed values of entropy were used in the solution ofthe
equations for a cone [ (C-18), (C-19). (C-20), "nd (C-29) 1, discontinuities occurred in
the density and temperature at the cone =rface. An example of the cone surface
density is given in Figure C-15 (curve lebeied p = p (p, S). Note that the smoothed

C-16
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values show some improvement over the unsmoothed entropy values but both results
deviate too much from the solution of Reference C-5 (up to 10 percent).

To get around this problem, several other alternatives were investigated. The first of
these was to solve the conical equations using the total enthalpy and locally
computed values of p, Vr, and Ve from Equations (C-18) to (C-20) to solve for
intermediate values of enthalpy from Equation (C-30). Internal energy could be
computed using Equation C-31 and then density and speed of sound could be updated
with p (hi, p) and a (e, p). Using this approach, the results labeled p (h, p) of Figure C-
15 were obtained. These results agree almost identically to those of Hudgins.C-5
However, they still do not use one of the key parameters that will be needed
downstream in the computation process: the constancy of entropy along the body
surface.

SMOOTHED ACTUAL VALUES

VALUES FROM B-6
65 1 rho a 2.S1 x 10 7 SLUGS/ft 3

60 rho a 2.S1 x 10-6 SLUGSft 3

ENTROPY rho a 2.51 x 10-5 SLUGSf
(ft2Isec2--R x 10-3) 55-

soo

45

2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

ENERGY(ft 21secW x 10-6)

FIGURE C-14. ENTROPY VERSUS ENERGY FOR CONSTANT
VALUES OF DENSITY

A final attempt was made to use entropy. The approach was to solve the conical
flow equations (C-18) through (C-20) with conditions behind the shock determined as
previously discussed.

Behind the shock, internal energy was found from Equation (C-31). Entropy
was found from Equation 73 where S = S (e, p). Using this value of S and p, a new
value of e was computed from e = e (p, S). This value of e was compared to the
previous value of e. If the two did not agree to some desired accuracy, a new value of
S was guessed and an iteration took place until the two values of e agreed. This then

C-19
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was the value of S that was held constant in the wedge or cone flows and along the
body surface (S = SI). Using this approach to determine SI, Equations (C-18) through
(C-20) were solved in conjunction with (C-29). These results are shown in Figure C-
15 as p (p, SI) where SI refers to the value of entropy found from iteration. These
results are very close to those where density is computed from p = p (h, p) up to cone
half-angles of 200. The largest error up to cone half-angles of 300 is about 4 percent
and for cone angles less than 200 is less than 1 percent. This then is the approach
chosen to compute entropy that will be used throughout the flow field computations.
Figures C-16 through C-18 show the comparison of the various cone solutions on
surface pressure, temperature, and density for two velocities. Note that if one were
interested in pressure only, any of the approaches are adequate. However, to get the
most correct value of temperature that is needed for aerothermal analysis, the
approach of iterating to find entropy appears to give results closer to the correct
solution.

The only explanation that can be offered for this discrepancy is the fact that the
curve fits are stated to be accurate to within 2 percent. The curve fits are formulated
basically independent of each other. On the other hand, by using results from other
curve fits to force a more correct value of entropy to be computed requires more
consistency in the conservation laws and thermodynamic properties. The approach of
iterating to find entropy takes a little more computer time. However, for the work
herein where entropy will be held constant along the body surface and hence only
computed once, the computational time is insignificant.

0.25
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0.10
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0 5 10 15 20 25 30
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FIGURE C-15. COMPARISON OF DENSITY AT THE CONE SURFACE USING VARIOUS
WAYS OF UPDATING DENSITY IN FLOW FIELD SOLUTION (h = 100 k ft}
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APPENDIX D
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COMPUTATION OF PROPERTIES ACROSS EXPANSION WAVES
IN FROZEN AND EQUILIBRIUM CHEMICALLY

REACTING FLOWS

Prandtl-Meyer Expansion (PME) flow is standard mi the aerodynamics
literature (see, for example, References D-1 through D-5). For convenience, a brief
summary of the theory and results is presented in this appendix.

The PME consists of an isentropic turning of a streamline from its initial
conditions at state 1 to its final conditions at state 2 (see Figure D-1). Note that,
while this is an isentropic process (for equilibrium air), this process applies from
streamline to streamline, and each streamline can have different conditions.
Referring to Figure D-1, this means that we do not necessarily have constant
conditions in the entire flow field leading up to the turn. Indeed, in general, they are
not. However, on the body surface, since it is considered a streamline, the flow is
isentropic so long as nonequilibrium conditions do not occur. The Mach waves are
actually characteristic lines along which no flow informatiln is transmitted
upstream. Of course, as conditions from streamline to streamline change, the Mach
lines or characteristics will curve to accommodate these changes. If conditions ahead
of the turn are constant throughout the flow field, the characteristics will be straight.

MACH WAVE a SIN-l(1IM 1) =

MACH WAVE =

- SIN -'(11/M 2) = P2

pi. p2 * BEGiNNING AND "

ENDING MACH OR -d9 dv P2
EXPAN•SION WAVE ANGLES

CONDITIONS AFTER TURN
V2 - M, P2•. P2- Y¥, h2 e2 , s1, T2

FIGURE D-1. PRIANDTL-MEYER EXPANSION (P.-E) PROCESS
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Another important feature is that the velocity parallel or tangenti.11 to the
Mach line will be constant on either side. This comes from the conservation of mass
and momentum equations used in derivation of the equations for flow across shock
waves. This result is independent of type of flow (i.e., shock or expansion wave).
Looking at an incremental change in the velocity as the flow turns around a comer,
we can derive the equations for P.M. flows. Referring to the bottom Aketch of Figuare
D-2, we can write the following from geometry:

dV cep=(V +dV)(-d 0) -VdO (D-1)

dV
sinp = - (D-2)

dV
n

The figure shows p, but the process applies to any portion of the expansien, so the
subscripts have been dropped in the analysis. Substituting (D-2) into (D-1), we get

dV -- -Vd 0

sin p

or

dV
-dO =ct p - (D-3)

But, since

1
sinp = --

M
then

co t ---

Equation (D-3) becomes

-dO = N/i IdVL

V

From the adiabatic energy equation, one ca a write

H = Const = h + - (D-5)
2

Differentiating (D-5), soliving for dVIN, we obtain

dV d(H-h)" 'V -2 U-- h• (D-6)

D-'
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Also

- ==M = -(D-7)
. a a

Substituting Equations (D-6) and (D-7) inw (D-4), the general equation for PME
flows is obtained

i i-1
1 1 2(P.- h, d

-dO= 2(H- h) a J-d(H-h) (D-8)

This equation is quite geneval as the only assumption is isentropic flow along a
streamline. It, therefore, could apply to an isentropic expansion or compression and
to perfect, frozen, or equilibrium chemically reacting flows.

-dO
Vi III

.........................

V1+dV M d ' ''c

VnU Vt

- --- ----------------- -

n

ENLARGED VIEW OF TRIANGLE ABC V1 T-11 N(

dO

V 1 .dV

C

FIGUR~E D-?- GEOMETRY USED IN DERIVATION OF PRANDTL-MEYER EQUATION

D-5
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PE-1ECT GAS FLOW

If we assume a perfect gm then the specific heats are constant (CE, C) andZ Z
1. Thus, h - C' T and a2 = 7 RT. With theee subsmiutiois, Equation (D-8) becomes

11

-d= 1:-- -) - -X -- T) (D-9)

Butsince

T 2

Equation (D-9) can be rewritten in the form

-do= -i (D-1d)
l+ y'- 11 )

2 i

In integral form, th• ames

- :2do= -i - d
ei Jul1I+7-IeMi

2

If0 = 0* isdefined asthe flowangle that correspondsto M = 1, Equatio (D-11) can
be rewritten as

92 d6- I i("dO= J M Fy,?+1d M (D-12)

where

2 M• M2"-T
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The integrais of Eqjuation (D-12) can be inUegrated. by thie method of partia frnactions
to obtain:

rM1
of l t- j1 -

-Substituting into Equation (D-12), there is obtained

-02 + 0' = A= +V (MY - V (MY) (D-114)

AO and k 1 are known quantities so v(M.) can be computed from Equatioa (D-13).
v(M2) is then zomp-ated from Equation (D14), from which M2 is solved f.)r in a
nume7_'c~l itaration process by Equation 4D-13). Knowing M2 and the fAAt that the
flow along the streamne is .isentropic, all the other flow field properties can be
computed by the teta! pressure, den~aity. mud tewperature relationships which are
constant. That is

T, = T( + -- bey-i-.

2 ' 2 1
P -:P(I+Y+ (D-16)

p2=p 2 2 1

P2 P21 RT2  tD-17)

Also, frnm the adiabatic -.aergy relations we have

h2= = T- (D-18)

I(D-20)

H=CZT 0  (D-21)

V2 = V12 (H- h2 (D-22)

D-7
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FROZEN FLOW

If the flow i- frozen, the conditlons behind the shock for a normal shock on a
blurt bedy will !-e taken. These conditions come from the normal shock real gas
comrsutatior-s.

For wedge er cone flows (sharp ur pointed bodies), the conditions behind an
oblique shock c.R be used. Again these results come from real gas computations for
oblique shock wav&; .a Appendix B. Hence, the initial conditions for frozen flow on
blunt or Pointed bodies or blunt 3r sharp wings are known. This gives values of

-,f.f

which are properties ofthe gas and its chemical states.

The -t of the flow can then be solved similar to a perfect gas. That is,
Equaiiots (D-13) through (D-161 are solved where frozen values of yf are used for y.

Equations, OD-17) thiough (!)-22) are replaced with

P2 - P /(RZT,)

2 22

V2 2
P2

V 2-V2
h V= 2

2 2

2 h2 -2/p

EQUILIBPJUM CHEMICALLY REACTING FLOW

For the case of chemically reacting flows where the ratio of specific heats and
compressibility factor can change as the flow expands around the surface, one can no
longer assume a perfect gas and integrate Equation (D-8) in closed form. Equatin
(D-8) must be solved through numem ical integration. In differential equation form,
Equation (D-8) becomes

1)-8



NAVSWC TR 90-83

d(i - h) 2(H - h) (D-23)
dO

2(H-h)I a-

Once again, Fnurth-order Runge Kutta or other appropriate numerical integration
schemes can be used. The AC interval (02-01) is divided into a given number of
equally-spaced intervals. The initial values of H, k, 01, a2 (defined), a, M. p, p. S. etc.
are known. These ?-! come from the conditions behind a rnormal shock or oblique
shoe'k. Of ccurse, the conditions behind the shock must be taken to the surmfce of ihe
body and, in the case of a blunt body or ieading edge, taken to the point where the
PME process begins. For a blunt body, this process is discussed in the Modiied
Newtonian Theory section of the text and in the discussi-n of wedges and cones in
Appendix B.

One pooitive aspect about using the Fourth-order Runge Kutta integratien
routine (as opposed to Simpson's rule or some other integration process where h2 is
required) is the fai.t that no initiai guess of h2 is necessary nor any follow-on iteration
to correct this g-.ess based on the boundary conditions. Unfortunately, while
Equation (D-23) is given in a very straightforward manner for integration, a(h, S) is
no;-ava~iable from either Reference D-6 or D-7. Informal communication with
Tannehill aLqo revealed that this varticular thermofit equation still had not been
developed. As a result, either a resort to tablesD-8 must be used for a(h, S) or
Equation ,D-23) must be put in a form compatible with the thermofit equations of
References D-6 and D-7. Since the Lhermofit equation process is much faster than
table look-up proceditres, and at only a small sacrifice in accuracy, two diffe-ent
alternatives were investigated for solV &U!! P-q-ation (D-23).

The first approach uses the Prardtl-Meyer Equation D-4; that is

dV -V -V
dO - •V- - (D-24)

2a

Frum the one-dimensional momentum equation

dv dp (D-2-5)
pV

so that substitutirg Equation (D-25) into (D-24) one obtains

1-9
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dp V2D-26

r 7--Y
2

To solve Equation ,M-26), ane knows initial values of p. 0, 50.. p, a, and V.
Equation (D-26) is inte-rated using again F-,rth-order Runge Kutta to obtain a
value of p at the next integration interval. Knowing p and the fact that entropy is
constant, updated values of

p = p(p'S) (D-27)

a = a~p,S) h •7

e e(p,S) 9
can be computed from the thermofit equations of Reference D-7. Then

h =e +p!p
and (D-28)

V = V 2(H-h)

(D-27) and (D-28) are then used along with (D-26* in the integration.

A second method investigated involved the simultaneous solution of Equations
(D-24) and (D-26). That is, knowing initial values of V and a, Equation (I)-24) was
solved to obtain an updated value of V. This new value of V plus initial values of p, p,
and a were used to solve for p at the next integration step. Using p and S, p and a
were updated using Equation (D-27). Equations (D-24) and (D-26) were then solved
at the next integration step. Figures D-3 and D-4 give the results of these Lwo

approaches for pressure and temperature (referred to on the figures as methods I and
2) and compares these results to HeimsD-5 for equilibrium flow. it should be pointed
out that HeimsD-5 used table lock-up procedures for the real gas properties so his
results should be close to exact. Note thai. the method I approach of only integrating
one differential equation gives more accurate results compared to Heims.D-5 Hence,
this is the approach used herein for integrating the PME for equilibrium flow.

Figures D-5 through D-8 give pressure, temperature, density, and Mach
number for perfect, equilibrium, and frozen flow cases. The initial conditions for the
expansion were the same as those on Figures D-3 and D-4; that is, T1 = 6140°, M:- =
1. and P1 = 1-2 atm. It is quite interesting to note that while pressure is not affected
to any appreciable extent in a compression process compared to perfect gas
computations, it increases in an expansion process of equilibrium versus perfect gas
computations fr Figur-; D-5). Also, the equilibrium temperature increases in an

P5-10
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NA"'~EQUILIBRIUM FLOW

0.81 !

FROZEm FLOW. y 82 pfp

FROZEN FLOW.ju We,

PEIC GAS

FIGUE ?T 2 0  FLOW DEFLECTION, A-)

FIUR -5. PERFE0C7T FROZEN, EQUILIBRTIUM PME: PRESSURE VERSUS
FLOW DEIRLEG-TION ANGLE (Ml 1 .0. LOT = 6140'K p: = 1-23atmi

FROZEQ FLOIW. V - 0pp

I -~~ EQUIURRIWMFI

0.8]

TIT, FROZEN FjC . -Y hie
0.4-1

0.24PRC A

FLWDfUW-TIcWd.(*

FIGURE D,6. PERFECT, FROZEN-, EQUI LIBRIUM PME: T.EMPERATU RE VTERSUS

MLOW D E FLPECMION A N CiLEx M I = 1.O, T 6 14 Olp M 1 -2 at ml

D-12



NAVS WC TR 90-683

EQUIUBRIUM FLOW
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FIGURE D-7. PERFECT, FROZEN, EQUILIBRIUM PME: DENSITY VERSUtS
FLOW DEFLECTION ANGLE (Mi = 1.0, Ti = 6140, P, = 1.2 atm)
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expansion as opposed to decreasing in a compression compared Wo perfect gas
computations (see Figure D-6). Note that density of equilibrium flows versus perfect
gas is nearly constant for en expansion (Figure D-7), whereas it inreases for an
equilibrium compression compared to a perfect gas. Finally, Mach numtber decreases
for an equilibrium expansion compared to a perfect gas (Figure D-8). Frozen flow
cases are also shown on Figures D-5 through D-8 where the gas conditions that exist
at the initial condition state are held constant throughout the expansioL. process.
Two values of the initial state are held fixed corresponding to the isentropic exponent
(y = a2p / p) and the so-called "equivalent" gamma (j = h/e). Note thai. for the
expansion process there is very little difference between the two, which indicates that
for this set of initial conditions both values of gamma are about the same. This may
not necessarily be the case, however, had the frozen flow values of y and 1 been these
that existed behind a normal shock on a blunt body.
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DERIVATION OF CHARACTERISTIC COMPATIBHITY
CONDITIONS IN STREAMIENE COORDINATES

Our equations of motion in vector form are as follows:

Continuity

V - (p V= (0-l)

Momentum

DV
p -- =-Vp

Dt V

or for steady flow

pV-V V . =Vp (E-2)

Ener;

V22 + h = Ht -= onsant (E-3)
2

State

h = h(p,p)

a = a(p,p)

Wz would like to fi•st transform these equations to the intrinsic or streamline
coordinate system. In streamline coordinates, s is along &,e body, which is a
streamline, and n is normz., to it. Also

V =V' (B-5)

Substituting (E-5) into (E-I) and (E-2) there is obtained

A A.'
(PV)Ve +e V(pV- (E-6)

E-3
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V2 ( "V)= - -- (E-7)

s a k 9 P

Take the dot product of Equation (E-7) wihO, to obtain

n~ S ~ - 0 nV (E-8)

Using the vector identities

(Ie _VA =VXA A

tA XA A A A1

and the fact thates e- et, Equation E-8 becomes

A AAet-IVx )+- -Vp (E-9)

Also, for equilibrium flow, entropy is conserved along streamlines, which
requ~ires

A 2- % • (E-10)

Subsuituting Equation (E-10) into the continuity Equation (6) and expanding there is
obtained

(-e' ,- V)V Vp - V(V -1) (E-11)

But from the momentin Equation (E-7), after_ taking the dot product with A, one

obtains

e . VV - " P) (E-12)

e pV
2

Substituting(E-12) into (E-1, and performing the aigeb-!&, one obtains

p 2  .Vp +'. - 0 (E-13)

E4
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where

M2

The next step in the transformation of the equations of motion (E-1) and (E-2)
into streamline coordinates is to relate the unit vectors e4 and 2n to those in the
cylindrical coordinates 'e* and Ar To do this, simply rotate the ,, er axis through an
angle 0 to the,, en plane. This gives

=cos9 + sine• (E-14)9 x r

eA Asin A) + wlý (E-15)

The vector operators in cylindrical coordinates are

±A ± A

x= e z Are (E-16)

I a(rA.) a(rAr)

AA

V'A= [ a
rVa A 2

r ax 3 r a q-)

Al A 2 rA3

For axisymmetric flow

ao -A ==0

so that

V A = -A2 'A
V-.:• (E,-18)

F_-5
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Now in general x = x ( s,n )andr = r(s,n). Thus, using the chain rule, one can
write

-ax,=3S at a +n-\ (E!9

- - -- -- + (E -20)ar. as .ar an

Using E.uations (E-14) and (E-15), Equations (E-19) and (E-20) become

a a a- =me- - inO- (E-21)ax as
a a a

-= sino-- + Cose- (E-22)r a8s an

Now substituting Equations (E-14), (E-16), and (E-17) into the continuity equation
(E-13), one obtains

2

2 1 ~iSe 1 + (siO)OJ I.
P V2 I zI ax rarj

I a I a
+ - - (raiO) + - - (rsine) = 0r a x r ar (E-23)

Now substituting Equations (E-21) and (E-22) into (E-23), performing the algebra,
there is obtained

e ap ao -simO

pV 2 as an r (E-24)

This then is the continuity equation in streamline coordinates in terms of the

dependent variables p and 0.

For the momentum equation (E-9), where

IA

e.
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substitute Equations (E-18), (E-15&, {E-16) and perform the dot product to obtain

Sf 
ap p(E-25)_igino)- -- (WOse) + -VIsie-+-S

ax ar Pv2 a x

Finally, substitute the relations (E-21) and (E-22) into (E-25) and perform the
algebra to get the final form of the n momentum equation

1 ap a(E-26)

pV 2 an as

Equations (E-24), (E-26), and (E-10) are the continuity and momentum equations in
streamline coordinates. They, in conjunction with (E-3) and (E4) allow a complete
solution of the flow field for axisymmetric bodies at zero angle of attack in steady,
iaviscid, adiabatic flow of an equilibrium chemically reacting fluid-

The next step in the derivai.on of the characteristic compatibility relations is to
put the equations in a form for solution of the partial derivatives. It will ther, become
obvious as to why the equations were put in the form of streamline coordinates before
the compatibility equations were derived. In essence, this allowed reduction of one
•--riable since in streamline coordinates the velocity is along the streamline, whereas
in rectangular or cylindrical coordinates the velocity has components along the
respective axes. Also, the entropy is constant along the streamline, simplifying the
energy equation-

Repeating the equations for our mathematical model for convenience, we have

e ap ao -sine

PV 2 as 13n r (E-24)

1 + a 0 o (E-26)

pV 2 an as

Also, we can write

dp = ds + L- dn (E-27)
as an

dO = a- ds + -- dn (E-28)as anr

Putting Equations (E-24), (E-26), and (E-28) in symbolic determinant form one has

E-7
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ap ap ae ae I
as an as an

I " '

P2 r

1 V1
o 0 0

PV 2

ds dn 0 dp

0 0 ds dn dO

One can then solve for any one of the partial derivatives through a simple deter-
minant process. For example

ao= N
as D

P 2  -sio

-V 0 r

0 -0 0
pV

2

where N = (E-29'

ds d n dp 0

0 0 dO dn

E-8
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and [
ip2I
i o0 0

1pv0

10 ± IS~PV2

D = (E-30)

Ids dn 0 0

L 0 0 ds dn

The characteristic curves are defined as those lines along which the derivatives of
fluid properties might be discontinuous. To determine these curves requires the
denominator., Equation (E-30), to go to zero. Performing this operation and carrying
out the algebra one obtains the result

d n i I
- =+- taV (E-31)

ds 'Ovi:7

This s-ays that along lines, called characteristic lines (which are also equal to Mach
lines because the lines make the angle p with respect to the streamline), the
derivatives offlow properties may be discontinuous.

Now in order for the derivatives to exist, if the denominator is zero, then the
numerator must also be equal to zero. Setting Equation (E-29) to zero and carrying
out the math, one obtains the so-called compatibilIty condition

dOds + t + d -) = 0 (E-32)
kpV2 ) /

Substituting (E-31) into (E-32), recognizing that the projections onto the s axes of the
C1 and C2 coordinates are

d_- = dC1 CsL. + dC2 Cs

then one obtains

E-9
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f dp dO -sanOmsinp
PV 2 dCI d CI r (E-33)

P0 dp dO siOnsin p

pV2 d C2  d C2  r (E-34)

Here CI is called the left running and C2 the right running characteristic
corresponding to the plus and minus signs of Equation (E-31), respectively.

Note that along the characteristic lines, the partial differential equations (E-1)
and (E-2) have been reduced to two first-order ordinary differential equations. This is
the major advantage of the method of characteristics as it always reduces the
equations of motion by one dimension when solved along the characteristic lines or
surfaces.

E-10
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